The reasonable decision of ship detention plays a vital role in flag state control (FSC). Machine learning algorithms can be applied as aid tools for identifying ship detention. In this study, we propose a novel interpretable ship detention decision-making model based on machine learning, termed SMOTE-XGBoost-Ship detention model (SMO-XGB-SD), using the extreme gradient boosting (XGBoost) algorithm and the synthetic minority oversampling technique (SMOTE) algorithm to identify whether a ship should be detained. Our verification results show that the SMO-XGB-SD algorithm outperforms random forest (RF), support vector machine (SVM), and logistic regression (LR) algorithm. In addition, the new algorithm also provides a reasonable interpretation of model performance and highlights the most important features for identifying ship detention using the Shapley additive explanations (SHAP) algorithm. The SMO-XGB-SD model provides an effective basis for aiding decisions on ship detention by inland flag state control officers (FSCOs) and the ship safety management of ship operating companies, as well as training services for new FSCOs in maritime organizations.
3D object detection with LiDAR and camera fusion has always been a challenge for autonomous driving. This work proposes a deep neural network (namely FuDNN) for LiDAR–camera fusion 3D object detection. Firstly, a 2D backbone is designed to extract features from camera images. Secondly, an attention-based fusion sub-network is designed to fuse the features extracted by the 2D backbone and the features extracted from 3D LiDAR point clouds by PointNet++. Besides, the FuDNN, which uses the RPN and the refinement work of PointRCNN to obtain 3D box predictions, was tested on the public KITTI dataset. Experiments on the KITTI validation set show that the proposed FuDNN achieves AP values of 92.48, 82.90, and 80.51 at easy, moderate, and hard difficulty levels for car detection. The proposed FuDNN improves the performance of LiDAR–camera fusion 3D object detection in the car category of the public KITTI dataset.
It is very important to build model by data mining algorithm of spatial data under large data environment using spatial and temporal co-occurrence pattern, analysis is conducted in view of existing Time Aggregate Graph spatial and temporal co-occurrence pattern, mining efficiency improvement is obtained, an improved spatial and temporal co-occurrence pattern is proposed, the improved model is verified to increase efficiency by instances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.