Flexible pressure sensors play significant roles in wearable devices, electronic skins, and human‐machine interface (HMI). However, it remains challenging to develop flexible piezoresistive sensors with outstanding comprehensive performances, especially with excellent long‐term durability. Herein, a facile “interfacial locking strategy” has been developed to fabricate metal aerogel‐based pressure sensors with excellent sensitivity and prominent stability. The strategy broke the bottleneck of the intrinsically poor mechanical properties of metal aerogels by grafting them on highly elastic melamine sponge with the help of a thin polydimethylsiloxane (PDMS) layer as the interface‐reinforcing media. The hierarchically porous conductive structure of the ensemble offered the as‐prepared flexible piezoresistive sensor with a sensitivity as high as 12 kPa −1 , a response time as fast as 85 ms, and a prominent durability over 23 000 compression cycles. The excellent comprehensive performance enables the successful application of the flexible piezoresistive sensor as two‐dimensional (2D) array device as well as three‐dimensional (3D) force‐detecting device for real‐time monitoring of HMI activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.