This study investigated the expression of nucleolin in tissue samples in patients with non-small cell lung cancer (NSCLC). Nucleolin was studied to determine whether it has a prognostic value and if its levels correlate with various clinicopathologic parameters. The relationship between nucleolin and expression of DNA-PKcs was also evaluated. Immunohistochemistry was used for detecting the expression levels of nucleolin and DNA-PKcs in tissues from 225 stage IA to IIIB NSCLC patients who underwent lung surgery. Nucleolin was observed predominantly in the cytoplasm, and some levels were observed in the nucleus. Nucleolin expression was higher in NSCLC tissues than adjacent normal lung tissues. Among 225 NSCLC patients, 117 (52.0 %) had high expression of nucleolin. The expression of nucleolin was significantly associated with pathologic stage (P = 0.013) and T status (P = 0.043). Multivariate analysis revealed that nucleolin, cytoplasmic nucleolin, and nuclear nucleolin expression were independent prognostic factors for both overall survival (OS) (P < 0.001) and disease-free survival (DFS) (P < 0.001). A high level of nuclear nucleolin served as an independent prognostic factor for better survival, while a high level of cytoplasmic nucleolin was closely associated with worse prognosis in NSCLC patients. The expression of nucleolin and cytoplasmic nucleolin positively correlated with DNA-PKcs (P < 0.001). These data suggest that nucleolin could be an effective treatment target and prognostic factor for patients with NSCLC.
The presence of more than or equal to 5 CTCs in patients with metMTC is associated with worse OS. Larger cohorts are required to validate the prognostic value of CTC enumeration.
Cryptotanshinone (CTS), a bioactive constituent extracted from a Chinese traditional herb Danshen (Salvia miltiorrhiza), demonstrates multiple protective effects against cardiovascular diseases. The present study was designed to explore the effects of CTS in vitro by cultured adult rat cardiac fibroblasts stimulated with angiotensin II (Ang II) and in vivo by rats with acute myocardial infarction. Our data showed that in cardiac fibroblasts, CTS attenuated Ang II-induced upregulation of fibronectin, connective tissue growth factor, cyclooxygenase-2, and normalized Ang II-induced upregulation of extracellular signal-regulated kinases 1/2 (ERK1/2). Meanwhile, CTS depressed the Ang II-stimulated upregulation of NAD(P)H oxidase 2 and 4 (NOX-2 and NOX-4) and reactive oxygen species production. Similar results were observed in acute myocardial infarction rats with oral administration of CTS, which relieved the pathological changes accompanying myocardial infarction. In conclusion, CTS may exert antifibrotic effects in vitro by inhibiting Ang II-induced extracellular signal-regulated kinases 1/2 phosphorylation and the expression of cyclooxygenase-2, NOX-2, and NOX-4, and also improved the pathological changes and relieved cardiac fibrosis in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.