The genomic organisation of the seven cultivated Vigna species, V. unguiculata, V. subterranea, V. angularis, V. umbellata, V. radiata, V. mungo and V. aconitifolia, was determined using sequential combined PI and DAPI (CPD) staining and dual-colour fluorescence in situ hybridisation (FISH) with 5S and 45S rDNA probes. For phylogenetic analyses, comparative genomic in situ hybridisation (cGISH) onto somatic chromosomes and sequence analysis of the internal transcribed spacer (ITS) of 45S rDNA were used. Quantitative karyotypes were established using chromosome measurements, fluorochrome bands and rDNA FISH signals. All species had symmetrical karyotypes composed of only metacentric or metacentric and submetacentric chromosomes. Distinct heterochromatin differentiation was revealed by CPD staining and DAPI counterstaining after FISH. The rDNA sites among all species differed in their number, location and size. cGISH of V. umbellata genomic DNA to the chromosomes of all species produced strong signals in all centromeric regions of V. umbellata and V. angularis, weak signals in all pericentromeric regions of V. aconitifolia, and CPD-banded proximal regions of V. mungo var. mungo. Molecular phylogenetic trees showed that V. angularis and V. umbellata were the closest relatives, and V. mungo and V. aconitifolia were relatively closely related; these species formed a group that was separated from another group comprising V. radiata, V. unguiculata ssp. sesquipedalis and V. subterranea. This result was consistent with the phylogenetic relationships inferred from the heterochromatin and cGISH patterns; thus, fluorochrome banding and cGISH are efficient tools for the phylogenetic analysis of Vigna species.
The two cultivated Canavalia (Adanson, 1763) species, Canavalia gladiata (N. J. von Jacquin, 1788) A. P. de Candolle, 1825 and Canavalia ensiformis (Linnaeus, 1753) A. P. de Candolle, 1825 are closely related based on morphological and molecular phylogenetic data. However, the similarities and differences in genome organization between them have not been evaluated at molecular cytogenetic level. Here, detailed karyotypes of both species were constructed using combined PI and DAPI (CPD) staining, rDNA-FISH and self-genomic in situ hybridization (sGISH). For further comparison, comparative genomic in situ hybridization (cGISH) and sequence analysis of 5S rDNA were applied. Their chromosomes were accurately identified by sGISH and rDNA-FISH signals. Both species had the karyotype formula 2n = 22 = 18m + 4m-SAT, but the karyotype of C. ensiformis was shorter and more asymmetric than that of C. gladiata. They displayed similar CPD bands at all 45S rDNA sites and centromeres. C. gladiata had ten centromeric 5S rDNA loci and two SC (secondary constriction)-associated 45S rDNA loci. C. ensiformis had nine centromeric and one interstitial 5S loci, two SC-associated and one proximal 45S loci. Their sGISH signal patterns displayed both basic similarities and distinct differences. Reciprocal cGISH generated prominent signals in all pericentromeric regions and 45S sites. There was lower level of sequence identity of the non-transcribed spacer between their 5S rDNA repeats. These data confirmed the evolutionary closeness between C. gladiata and C. ensiformis and demonstrated obvious differentiation between their genomes, and supported the opinion that C. ensiformis is more advanced in evolution than C. gladiata.
To extend our knowledge on karyotype variation of the genus Vigna Savi, 1824, the chromosomal organization of rRNA genes and fluorochrome banding patterns of five wild Vigna species were studied. Sequential combined PI (propidium iodide) and DAPI (4',6-diamidino-2-phenylindole) (CPD) staining and fluorescence in situ hybridization (FISH) with 5S and 45S rDNA probes were used to analyze the karyotypes of V. luteola (Jacquin, 1771) Bentham, 1959, V. vexillata (Linnaeus, 1753) A. Richard, 1845, V. minima (Roxburgh, 1832) Ohwi & H. Ohashi, 1969, V. trilobata (Linnaeus, 1753) Verdcourt, 1968, and V. caracalla (Linnaeus, 1753) Verdcourt,1970. For further phylogenetic analysis, genomic in situ hybridization (GISH) with the genomic DNA of V. umbellata (Thunberg, 1794) Ohwi & H.Ohashi, 1969 onto the chromosomes of five wild Vigna species was also performed. Detailed karyotypes were established for the first time using chromosome measurements, fluorochrome bands, and rDNA-FISH signals. All species had chromosome number 2n = 2x = 22, and symmetrical karyotypes that composed of only metacentric or metacentric and submetacentric chromosomes. CPD staining revealed all 45S rDNA sites in the five species analyzed, (peri)centromeric GC-rich heterochromatin in V. luteola, V. trilobata and V. caracalla, interstitial GC-rich and pericentromeric AT-rich heterochromatin in V. caracalla. rDNA-FISH revealed two 5S loci in V. caracalla and one 5S locus in the other four species; one 45S locus in V. luteola and V. caracalla, two 45S loci in V. vexillata and V. trilobata, and five 45S loci in V. minima. The karyotypes of the studied species could be clearly distinguished by the karyotypic parameters, and the patterns of the fluorochrome bands and the rDNA sites, which revealed high interspecific variation among the five species. The V. umbellata genomic DNA probe produced weak signals in all proximal regions of V. luteola and all (peri)centromeric regions of V. trilobata. The combined data demonstrate that distinct genome differentiation has occurred among the five species during evolution. The phylogenetic relationships between the five wild species and related cultivated species of Vigna are discussed based on our present and previous molecular cytogenetic data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.