Image enhancement plays an important role in image processing and analysis. Among various enhancement algorithms, Retinex-based algorithms can efficiently enhance details and have been widely adopted. Since Retinex-based algorithms regard illumination removal as a default preference and fail to limit the range of reflectance, the naturalness of non-uniform illumination images cannot be effectively preserved. However, naturalness is essential for image enhancement to achieve pleasing perceptual quality. In order to preserve naturalness while enhancing details, we propose an enhancement algorithm for non-uniform illumination images. In general, this paper makes the following three major contributions. First, a lightness-order-error measure is proposed to access naturalness preservation objectively. Second, a bright-pass filter is proposed to decompose an image into reflectance and illumination, which, respectively, determine the details and the naturalness of the image. Third, we propose a bi-log transformation, which is utilized to map the illumination to make a balance between details and naturalness. Experimental results demonstrate that the proposed algorithm can not only enhance the details but also preserve the naturalness for non-uniform illumination images.
Background There is no evidence supporting that temperature changes COVID-19 transmission. Methods We collected the cumulative number of confirmed cases of all cities and regions affected by COVID-19 in the world from January 20 to February 4, 2020, and calculated the daily means of the average, minimum and maximum temperatures in January. Then, restricted cubic spline function and generalized linear mixture model were used to analyze the relationships. Results There were in total 24,232 confirmed cases in China and 26 overseas countries. In total, 16,480 cases (68.01%) were from Hubei Province. The lgN rose as the average temperature went up to a peak of 8.72℃ and then slowly declined. The apexes of the minimum temperature and the maximum temperature were 6.70℃ and 12.42℃ respectively. The curves shared similar shapes. Under the circumstance of lower temperature, every 1℃ increase in average, minimum and maximum temperatures led to an increase of the cumulative number of cases by 0.83, 0.82 and 0.83 respectively. In the single-factor model of the higher-temperature group, every 1℃ increase in the minimum temperature led to a decrease of the cumulative number of cases by 0.86. Conclusion The study found that, to certain extent, temperature could significant change COVID-19 transmission, and there might be a best temperature for the viral transmission, which may partly explain why it first broke out in Wuhan. It is suggested that countries and regions with a lower temperature in the world adopt the strictest control measures to prevent future reversal.
Feature extraction is of high importance for effective data classification in hyperspectral imaging (HSI). Considering the high correlation among band images, spectral-domain feature extraction is widely employed. For effective spatial information extraction, a 2-D extension to singular spectrum analysis (SSA), a recent technique for generic data mining and temporal signal analysis, is proposed. With 2D-SSA applied to HSI, each band image is decomposed into varying trend, oscillations and noise. Using the trend and selected oscillations as features, the reconstructed signal, with noise highly suppressed, becomes more robust and effective for data classification. Three publicly available data sets for HSI remote sensing data classification are used in our experiments. Comprehensive results using a support vector machine (SVM) classifier have quantitatively evaluated the efficacy of the proposed approach. Benchmarked with several state-of-the-art methods including 2-D empirical mode decomposition (2D-EMD), it is found that our proposed 2D-SSA approach generates the best results in most cases. Unlike 2D-EMD which requires sequential transforms to obtain detailed decomposition, 2D-SSA extracts all components simultaneously. As a result, the executive time in feature extraction can also be dramatically reduced. The superiority in terms of enhanced discrimination ability from 2D-SSA is further validated when a relatively weak classifier, k-nearest neighbor (k-NN), is used for data classification. In addition, the combination of 2D-SSA with 1D-PCA (2D-SSA-PCA) has generated the best results among several other approaches, which has demonstrated the great potential in combining 2D-SSA with other approaches for effective spatial-spectral feature extraction and dimension reduction in HSI. Index Terms-Data classification, feature extraction, hyperspectral imaging (HSI), 2-D empirical mode decomposition (2D-EMD), 2-D singular spectrum analysis (2D-SSA).
Stacked autoencoders (SAEs), as part of the deep learning (DL) framework, have been recently proposed for feature extraction in hyperspectral remote sensing. With the help of hidden nodes in deep layers, a high-level abstraction is achieved for data reduction whilst maintaining the key information of the data. As hidden nodes in SAEs have to deal simultaneously with hundreds of features from hypercubes as inputs, this increases the complexity of the process and leads to limited abstraction and performance. As such, segmented SAE (S-SAE) is proposed by confronting the original features into smaller data segments, which are separately processed by different smaller SAEs. This has resulted in reduced complexity but improved efficacy of data abstraction and accuracy of data classification
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.