Liver fibrosis is a common phenomenon that is associated with several pathologies and is characterized by excessive extracellular matrix deposition that leads to progressive liver dysfunction. Bone morphogenetic protein 9 (BMP9) is the most recently discovered member of the BMP family. BMP9 bound with high affinity to activin receptor-like kinase 1 (ALK1) and endoglin in non-parenchymal liver cells. In addition, BMP9 activated Smad1/Smad5/Smad8 and induced the expression of the target genes inhibitor of differentiation 1 (Id1), hepcidin, Snail and the co-receptor endoglin in liver cells. Although the role of BMP9 in liver fibrosis is currently poorly understood, the presence of BMP9-activated proteins and its target genes have been reported to be associated with liver fibrosis development. This review summarizes the indirect connection between BMP9 and liver fibrosis, with a focus on the BMP9 signaling pathway members ALK1, endoglin, Id1, hepcidin and Snail. The observations on the role of BMP9 in regulating liver fibrosis may help in understanding the pathology mechanisms of liver disease. Furthermore, BMP9 could be served as a potent biomarker and the target of potential therapeutic drugs to treat hepatocytes fibrosis.
Background/Aims: Congenital scoliosis (CS) is a result of anomalous development of vertebrae and is frequently associated with somitogenesis malformation. Although noncoding RNAs (ncRNAs) have been recently determined to be involved in the pathogenesis of CS, the competing endogenous RNA (ceRNA) regulatory networks in CS remain largely unknown. Methods: Sequencing was conducted to explore the ncRNA expression profiles in rat embryos (gestation day 9) following vitamin A deficiency (VAD) (n = 9 for the vitamin A deficiency-induced congenital scoliosis (VAD-CS) group and n = 4 for the control group). Real-time reverse transcriptase polymerase chain reaction (RT-PCR) was conducted to verify the expression levels of selected mRNAs, long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs). Bioinformatics analysis was used to discover the possible relationships and functions of the ceRNAs. Results: A total of 749 mRNAs, 56 miRNAs, 685 lncRNAs, and 70 circRNAs were identified to have significantly different expression levels in the two groups. Wnt, PI3K-ATK, FoxO, EGFR, and mTOR were found to be the most significant pathways involved in VAD-CS pathogenesis. The circRNA/miRNA/mRNA and lncRNA/miRNA/mRNA networks of CS were built, and the gene expression mechanisms regulated by ncRNAs were unveiled via the ceRNA regulatory networks. Conclusion: We comprehensively identified ceRNA regulatory networks of embryonic somite development in VAD-CS as well as revealed the contribution of different ncRNA expression profiles. Our data demonstrate the association between mRNAs and ncRNAs in the pathogenic mechanism of CS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.