In recent years, scholars have paid increasing attention to the joint entity and relation extraction. However, the most difficult aspect of joint extraction is extracting overlapping triples. To address this problem, we propose a joint extraction model based on Soft Pruning and GlobalPointer, short for SGNet. In the first place, the BERT pretraining model is used to obtain the text word vector representation with contextual information, and then the local and non-local information of the word vector is obtained through graph operations. Specifically, to address the lack of information caused by the rule-based pruning strategies, we utilize the Gaussian Graph Generator and the attention-guiding layer to construct a fully connected graph. This process is called soft pruning for short. Then, to achieve node message passing and information integration, we employ GCNs and a thick connection layer. Next, we use the GlobalPointer decoder to convert triple extraction into quintuple extraction to tackle the problem of problematic overlapping triples extraction. The GlobalPointer decoder, unlike the typical feedforward neural network (FNN), can perform joint decoding. In the end, to evaluate the model performance, the experiment was carried out on two public datasets: the NYT and WebNLG. The experiments show that SGNet performs substantially better on overlapping extraction and achieves good results on two publicly available datasets.
Weakly-supervised object detection (WSOD) has attracted lots of attention in recent years. However, there is still a big gap between WSOD and generic object detection. The main barriers to the efficiency of WSOD are the ineffective data augmentations and inaccurate bounding box predictions. Given only the image-level annotations, it's hard for WSOD to effectively utilize variant data augmentations and accurately regress the bounding boxes. Although a fully-supervised object detector can be trained using annotations generated from the weakly-supervised obejct detector, the performance is still severely limited due to the low quality of mined pseudo annotations. This paper proposes an efficient WSOD method with pseudo annotations (EWPA) to make better use of imperfect annotations. With the assistance of pseudo annotations, EWPA can effectively regress more accurate bounding boxes while the traditional WSOD can only locate the salient parts of an object. Furthermore, pseudo annotations can help design more complex data augmentations to drive the network learning more discriminative feature representations. Extensive experiments are conducted on PASCAL VOC 2007 and 2012 datasets and validate the effectiveness of EWPA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.