Detection of double JPEG compression plays an important role in digital image forensics. Some successful approaches have been proposed to detect double JPEG compression when the primary and secondary compressions have different quantization matrices. However, detecting double JPEG compression with the same quantization matrix is still a challenging problem. In this paper, an effective error-based statistical feature extraction scheme is presented to solve this problem. First, a given JPEG file is decompressed to form a reconstructed image. An error image is obtained by computing the differences between the inverse discrete cosine transform coefficients and pixel values in the reconstructed image. Two classes of blocks in the error image, namely, rounding error block and truncation error block, are analyzed. Then, a set of features is proposed to characterize the statistical differences of the error blocks between single and double JPEG compressions. Finally, the support vector machine classifier is employed to identify whether a given JPEG image is doubly compressed or not. Experimental results on three image databases with various quality factors have demonstrated that the proposed method can significantly outperform the stateof-the-art method.
The local variance of image intensity is a typical measure of image smoothness. It has been extensively used, for example, to measure the visual saliency or to adjust the filtering strength in image processing and analysis. However, to the best of our knowledge, no analytical work has been reported about the effect of JPEG compression on image local variance. In this paper, a theoretical analysis on the variation of local variance caused by JPEG compression is presented. First, the expectation of intensity variance of 8×8 non-overlapping blocks in a JPEG image is derived. The expectation is determined by the Laplacian parameters of the discrete cosine transform coefficient distributions of the original image and the quantization step sizes used in the JPEG compression. Second, some interesting properties that describe the behavior of the local variance under different degrees of JPEG compression are discussed. Finally, both the simulation and the experiments are performed to verify our derivation and discussion. The theoretical analysis presented in this paper provides some new insights into the behavior of local variance under JPEG compression. Moreover, it has the potential to be used in some areas of image processing and analysis, such as image enhancement, image quality assessment, and image filtering.
Unsharp masking (USM) sharpening is a basic technique for image manipulation and editing. In recent years, the detection of USM sharpening has attracted attention from image forensics point of view. After USM sharpening, overshoot artifacts, which shape image texture, are generated along image edges. By utilizing the special characteristic of the texture modification caused by the USM sharpening, a novel method called edge perpendicular binary coding is proposed in this letter to detect USM sharpening. Extensive experiments have been conducted to show the superiority of the proposed method over the existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.