We review recent progress in the development of two-dimensional (2-D) photonic crystal (PC) materials for chemical and biological sensing applications. Self-assembly methods were developed in our laboratory to fabricate 2-D particle array monolayers on mercury and water surfaces. These hexagonal arrays strongly forward Bragg diffract light to report on their array spacings. By embedding these 2-D arrays onto responsive hydrogel surfaces, 2-D PC sensing materials can be fabricated. The 2-D PC sensors utilize responsive polymer hydrogels that are chemically functionalized to show volume phase transitions in selective response to particular chemical species. Novel hydrogels were also developed in our laboratory by cross-linking proteins while preserving their native structures to maintain their selective binding affinities. The volume phase transitions swell or shrink the hydrogels, which alter their 2-D array spacings, and shift their diffraction wavelengths. These shifts can be visually detected or spectrally measured. These 2-D PC sensing materials have been used for the detection of many analytes, such as pH, surfactants, metal ions, proteins, anionic drugs, and ammonia. We are exploring the use of organogels that use low vapor pressure ionic liquids as their mobile phases for sensing atmospheric analytes.
Fatty acid desaturases play important role in plant responses to abiotic stresses. However, their exact function in plant resistance to salt stress is unknown. In this work, we provide the evidence that FAD2, an endoplasmic reticulum localized ω-6 desaturase, is required for salt tolerance in Arabidopsis. Using vacuolar and plasma membrane vesicles prepared from the leaves of wild-type (Col-0) and the loss-of-function Arabidopsis mutant, fad2, which lacks the functional FAD2, we examined the fatty acid composition and Na+-dependent H+ movements of the isolated vesicles. We observed that, when compared to Col-0, the level of vacuolar and plasma membrane polyunsaturation was lower, and the Na+/H+ exchange activity was reduced in vacuolar and plasma membrane vesicles isolated from fad2 mutant. Consistent with the reduced Na+/H+ exchange activity, fad2 accumulated more Na+ in the cytoplasm of root cells, and was more sensitive to salt stress during seed germination and early seedling growth, as indicated by CoroNa-Green staining, net Na+ efflux and salt tolerance analyses. Our results suggest that FAD2 mediated high-level vacuolar and plasma membrane fatty acid desaturation is essential for the proper function of membrane attached Na+/H+ exchangers, and thereby to maintain a low cytosolic Na+ concentration for salt tolerance during seed germination and early seedling growth in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.