Objective
To examine the differential occurrence of Ophiocordyceps sinensis genotypes in the stroma, stromal fertile portion (SFP) densely covered with numerous ascocarps, and ascospores of natural Cordyceps sinensis.
Methods
Immature and mature C. sinensis specimens were harvested. Mature C. sinensis specimens were continuously cultivated in our laboratory (altitude 2,200 m). The SFPs (with ascocarps) and ascospores of C. sinensis were collected for microscopic and molecular analyses using species-/genotype-specific primers. Sequences of mutant genotypes of O. sinensis were aligned with that of Genotype #1 Hirsutella sinensis and compared phylogenetically using a Bayesian majority-rule method.
Results
Fully and semiejected ascospores were collected from the same specimens. The semiejected ascospores tightly adhered to the surface of the asci as observed by the naked eye and under optical and confocal microscopies. The multicellular heterokaryotic ascospores showed uneven staining of nuclei. The immature and mature stromata, SFPs (with ascocarps) and ascospores were found to differentially contain several GC- and AT-biased genotypes of O. sinensis, Samsoniella hepiali, and an AB067719-type fungus. The genotypes within AT-biased Cluster-A in the Bayesian tree occurred in all compartments of C. sinensis, but those within AT-biased Cluster-B were present in immature and mature stromata and SPFs but absent in the ascospores. Genotype #13 of O. sinensis was present in semi-ejected ascospores and Genotype #14 in fully ejected ascospores. GC-biased Genotypes #13–14 featured large DNA segment substitutions and genetic material recombination between the genomes of the parental fungi (H. sinensis and the AB067719-type fungus). These ascosporic offspring genotypes combined with varying abundances of S. hepiali in the 2 types of ascospores participated in the control of the development, maturation and ejection of the ascospores.
Conclusion
Multiple genotypes of O. sinensis coexist differentially in the stromata, SFPs and 2 types of C. sinensis ascospores, along with S. hepiali and the AB067719-type fungus. The fungal components in different combinations and their dynamic alterations in the compartments of C. sinensis during maturation play symbiotic roles in the lifecycle of natural C. sinensis.
Free radicals, electrophiles, and endogenous reactive intermediates are generated during normal physiological processes and are capable of modifying DNA, lipids, and proteins. However, elevated levels of oxidative modifications of proteins by reactive species are implicated in the etiology and pathology of oxidative stress-mediated diseases, neurodegeneration, and aging. A mass spectrometry-based approach is reported that aids to the identification and characterization of carbonyl-modified proteins. The method uses N'-aminooxymethylcarbonylhydrazino d-biotin, a biotinylated hydroxylamine derivative that forms an oxime derivative with the aldehyde/keto group found in oxidatively modified proteins. In this paper, the method is demonstrated for one class of carbonyl-modified proteins, namely, oxylipid peptide and protein conjugates formed by Michael addition-type conjugation reactions of alpha,beta-unsaturated aldehydic lipid peroxidation products with nucleophilic peptide side chains. This new application of an "old" probe, which has been used for the detection of abasic sites in DNA strands, introduces a biotin moiety into the oxylipid peptide conjugate. The biotin-modified oxylipid peptide conjugate is then amenable to enrichment using avidin affinity capture. The described method represents an attractive alternative to hydrazine-based derivatization methods for oxidized peptides and proteins because the reduction step necessary for the transformation of the hydrazone bond to the chemically more stable hydrazine bond can be omitted. Tandem mass spectrometry of the labeled oxylipid peptide conjugates indicates that the biotin moiety is at least partially retained on the fragment ion during the collisionally induced dissociation experiments, a prerequisite for the use of automated database searching of uninterpreted tandem mass spectra. The reported approach is outlined for the detection, identification, and characterization of oxylipid peptide conjugates, but the labeling chemistry may also be applicable to other carbonyl-modified proteins.
The modification of proteins by lipid peroxidation products has been linked to numerous diseases and age-related disorders. Here we report on the identification of endogenous protein targets of electrophilic 2-alkenals in cardiac mitochondria. An aldehyde/keto-specific chemical labeling and affinity strategy in combination with LC-MS/MS resulted in 39 unique lipoxidation sites on 27 proteins. Several of the target sites were modified by a variety of 2-alkenal products including acrolein, β-hydroxyacrolein, crotonaldehyde, 4-hydroxy-2-hexenal, 4-hydroxy-2-nonenal and 4-oxo-2-nonenal. Many of the adduction sites are implicated in the catalytic function of key mitochondrial enzymes suggesting potential impact on pathways and overall mitochondrial function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.