This study indicated that in their pollinating role, beetles, probable pollinators for this thermoregulating plant, had been replaced by some generalist insects in the wild. This finding implies that contemporary pollinators may not reflect the pollination syndrome.
Cyanobacteria have been proven to be cheaper and more effective for the removal of metallic elements in aqueous solutions. In this study, the living cyanobacteria Synechocystis sp. PCC6803 was used to adsorb Cd(II) and its extracellular polymeric substances (EPS) were investigated in the adsorption process. The initial stage of adsorption of Cd(II) was a rapid process, and then increase slowly accompanied with the increases of biomass. The final adsorption percentage could achieve 86% when the Cd(II) concentration was 0.5 mg/L. It proved that Synechocystis sp. PCC6803 has a good adsorption capacity for heavy metal ions. EPS was extracted to investigate the secretion of which was dynamic and the maximum extracellular polysaccharides and proteins were 134.2 and 100.9 mg/g, respectively. Furthermore, the real-time PCR (RT-PCR) results of genes (slr0977 and exoD) involved in EPS synthesis and secretion indicated that the EPS production was firstly increased and then decreased slightly. Transmission electron microscope (TEM) observation revealed that heavy metal ions were absorbed into EPS layer. Fourier transform infrared spectrum (FT-IR) analysis showed that EPS was rich in functional groups which could combine with heavy metal ions, such as -OH and -NH groups. All the results obtained show that the secretion of EPS by cyanobacteria was one of the ways to resist heavy metal stress. And it shows a trend of rising first and then decreasing, the change regulation of which was consistent with adsorptive behavior.
Acidithiobacillus ferrivorans is an acidophile that often occurs in low temperature acid mine drainage, e.g., that located at high altitude. Being able to inhabit the extreme environment, the bacterium must possess strategies to copy with the survival stress. Nonetheless, information on the strategies is in demand. Here, genomic and transcriptomic assays were performed to illuminate the adaptation mechanisms of an A. ferrivorans strain YL15, to the alpine acid mine drainage environment in Yulong copper mine in southwest China. Genomic analysis revealed that strain has a gene repertoire for metal-resistance, e.g., genes coding for the mer operon and a variety of transporters/efflux proteins, and for low pH adaptation, such as genes for hopanoid-synthesis and the sodium:proton antiporter. Genes for various DNA repair enzymes and synthesis of UV-absorbing mycosporine-like amino acids precursor indicated hypothetical UV radiation—resistance mechanisms in strain YL15. In addition, it has two types of the acquired immune system–type III-B and type I-F CRISPR/Cas modules against invasion of foreign genetic elements. RNA-seq based analysis uncovered that strain YL15 uses a set of mechanisms to adapt to low temperature. Genes involved in protein synthesis, transmembrane transport, energy metabolism and chemotaxis showed increased levels of RNA transcripts. Furthermore, a bacterioferritin Dps gene had higher RNA transcript counts at 6°C, possibly implicated in protecting DNA against oxidative stress at low temperature. The study represents the first to comprehensively unveil the adaptation mechanisms of an acidophilic bacterium to the acid mine drainage in alpine regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.