The BCL-2 inhibitor venetoclax improves survival for adult patients with acute myeloid leukemia (AML) in combination with lower-intensity therapies, but its benefit in pediatric patients with AML remains unclear. We retrospectively reviewed two Texas Medical Center institutions’ experience with venetoclax in 43 pediatric patients with AML; median age 17 years (range, 0.6–21). This population was highly refractory; 44% of patients (n = 19) had ≥3 prior lines of therapy, 37% (n = 16) had received a prior bone marrow transplant, and 81% (n = 35) had unfavorable genetics KMT2A (n = 17), WT1 (n = 13), FLT3-ITD (n = 10), monosomy 7 (n = 5), TP53 (n = 3), Inv(3) (n = 3), IDH1/2 (n = 2), monosomy 5 (n = 1), NUP98 (n = 1) and ASXL1 (n = 1). The majority (86%) received venetoclax with a hypomethylating agent. Grade 3 or 4 adverse events included febrile neutropenia in 37% (n = 16), non-febrile neutropenia in 12% (n = 5), anemia in 14% (n = 6), and thrombocytopenia in 14% (n = 6). Of 40 patients evaluable for response, 10 patients (25%) achieved complete response (CR), 6 patients (15%) achieved CR with incomplete blood count recovery (CRi), and 2 patients (5%) had a partial response, (CR/CRi composite = 40%; ORR = 45%). Eleven (25%) patients received a hematopoietic stem cell transplant following venetoclax combination therapy, and six remain alive (median follow-up time 33.6 months). Median event-free survival and overall survival duration was 3.7 months and 8.7 months, respectively. Our findings suggest that in pediatric patients with AML, venetoclax is well-tolerated, with a safety profile similar to that in adults. More studies are needed to establish an optimal venetoclax-based regimen for the pediatric population.
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy that can involve the bone marrow, peripheral blood, skin, lymph nodes, and the central nervous system. Though more common in older adults, BPDCN has been reported across all age groups, including infants and children. The incidence of pediatric BPDCN is extremely low and little is known about the disease. Pediatric BPDCN is believed to be clinically less aggressive but often with more dissemination at presentation than adult cases. Unlike adults who almost always proceed to a hematopoietic stem cell transplantation in first complete remission if transplant-eligible, the majority of children can be cured with a high-risk acute lymphoblastic leukemia-like regimen. Hematopoietic stem cell transplantation is recommended for children with high-risk disease, the definition of which continues to evolve, or those in relapse and refractory settings where outcomes continue to be dismal. Novel agents used in other hematologic malignancies and CD123 targeted agents, including chimeric antigen receptor T-cells and monoclonal/bispecific antibodies, are being brought into research and practice. Our goal is to provide a comprehensive review of presentation, diagnosis, and treatment by review of pediatric cases reported for the last 20 years, and a review of novel targeted therapies and therapies under investigation for adult and pediatric patients.
Despite advances in treatment options, the clinical outcomes of pediatric patients with advanced solid tumors have hardly improved in decades, and alternative treatment options are urgently needed. Innovative therapies, such as chimeric antigen receptor (CAR) T cells and oncolytic viruses (OVs), are currently being evaluated in both adults and children with refractory solid tumors. Because pediatric solid tumors are remarkably diverse and biologically different from their adult counterparts, more research is required to develop effective treatment regimens for these patients. Here, we first summarize recent efforts and advances in treatments for pediatric solid tumors. Next, we briefly introduce the principles for CAR T cell therapy and oncolytic virotherapy and clinical trials thereof in pediatric patients. Finally, we discuss the basis for the potential benefits of combining the two approaches in pediatric patients with advanced solid tumors.
Hodgkin lymphoma, a hematological malignancy of lymphoid origin that typically arises from germinal-center B cells, has an excellent overall prognosis. However, the treatment of patients who relapse or develop resistant disease still poses a substantial clinical and research challenge, even though current risk-adapted and response-based treatment techniques produce overall survival rates of over 95%. The appearance of late malignancies after the successful cure of primary or relapsed disease continues to be a major concern, mostly because of high survival rates. Particularly in pediatric HL patients, the chance of developing secondary leukemia is manifold compared to that in the general pediatric population, and the prognosis for patients with secondary leukemia is much worse than that for patients with other hematological malignancies. Therefore, it is crucial to develop clinically useful biomarkers to stratify patients according to their risk of late malignancies and determine which require intense treatment regimens to maintain the ideal balance between maximizing survival rates and avoiding late consequences. In this article, we review HL’s epidemiology, risk factors, staging, molecular and genetic biomarkers, and treatments for children and adults, as well as treatment-related adverse events and the late development of secondary malignancies in patients with the disease.
In this study, a total of 66 UDP-glucose pyrophosphorylase (UGP) (EC 2.7.7.9) genes were identified from the genomes of four cotton species, which are the members of Pfam glycosyltransferase family (PF01702) and catalyze the reaction between glucose-1-phosphate and UTP to produce UDPG. The analysis of evolutionary relationship, gene structure, and expression provides the basis for studies on function of UGP genes in cotton. The evolutionary tree and gene structure analysis revealed that the UGP gene family is evolutionarily conserved. Collinearity and Ka/Ks analysis indicated that amplification of UGP genes is due to repetitive crosstalk generating between new family genes, while being under strong selection pressure. The analysis of cis-acting elements exhibited that UGP genes play important role in cotton growth, development, abiotic and hormonal stresses. Six UGP genes that were highly expressed in cotton fiber at 15 DPA were screened by transcriptome data and qRT-PCR analysis. The addition of low concentrations of IAA and GA3 to ovule cultures revealed that energy efficiency promoted the development of ovules and fiber clusters, and qRT-PCR showed that expression of these six UGP genes was differentially increased. These results suggest that the UGP gene may play an important role in fiber development, and provides the opportunity to plant researchers to explore the mechanisms involve in fiber development in cotton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.