Atrial fibrillation (AF) commonly occurs after surgery and is associated with atrial remodeling. TRPV4 is functionally expressed in the heart, and its activation affects cardiac structure and functions. We hypothesized that TRPV4 blockade alleviates atrial remodeling and reduces AF induction in sterile pericarditis (SP) rats. TRPV4 antagonist GSK2193874 or vehicle was orally administered 1 d before pericardiotomy. AF susceptibility and atrial function were assessed using in vivo electrophysiology, ex vivo optical mapping, patch-clamp, and molecular biology on day 3 after surgery. TRPV4 expression increased in the atria of SP rats and patients with AF. GSK2193874 significantly reduced AF vulnerability in vivo and the frequency of atrial ectopy and AF with a reentrant pattern ex vivo. Mechanistically, GSK2193874 reversed the abnormal action potential duration (APD) prolongation in atrial myocytes through the regulation of voltage-gated K + currents (IK), reduced the activation of atrial fibroblasts by inhibiting P38, AKT, and STAT3 pathways, and alleviated the infiltration of immune cells. Our results reveal that TRPV4 blockade prevents abnormal changes in atrial myocyte electrophysiology and ameliorated atrial fibrosis and inflammation in SP rats, and, therefore, might be a promising strategy to treat AF, particularly post-operative AF.
Pre-existing Ca2+ handling abnormalities constitute the arrhythmogenic substrate in patients developing postoperative atrial fibrillation (POAF), a common complication after cardiac surgery. Postoperative interleukin (IL)-6 levels are associated with atrial fibrosis in several animal models of POAF, contributing to atrial arrhythmias. Here, we hypothesize that IL-6-mediated-Ca2+ handling abnormalities contribute to atrial fibrillation (AF) in sterile pericarditis (SP) rats, an animal model of POAF. SP was induced in rats by dusting atria with sterile talcum powder. Anti-rat-IL-6 antibody (16.7 μg/kg) was administered intraperitoneally at 30 min after the recovery of anesthesia. In vivo electrophysiology, ex vivo optical mapping, western blots, and immunohistochemistry were performed to elucidate mechanisms of AF susceptibility. IL-6 neutralization ameliorated atrial inflammation and fibrosis, as well as AF susceptibility in vivo and the frequency of atrial ectopy and AF with a reentrant pattern in SP rats ex vivo. IL-6 neutralization reversed the prolongation and regional heterogeneity of Ca2+ transient duration, relieved alternans, reduced the incidence of discordant alternans, and prevented the reduction and regional heterogeneity of the recovery ratio of Ca2+ transient. In agreement, western blots showed that IL-6 neutralization reversed the reduction in the expression of ryanodine receptor 2 (RyR2) and phosphorylated phospholamban. Acute IL-6 administration to isolated rat hearts recapitulated partial Ca2+ handling phenotype in SP rats. In addition, intraperitoneal IL-6 administration to rats increased AF susceptibility, independent of fibrosis. Our results reveal that IL-6-mediated-Ca2+ handling abnormalities in SP rats, especially RyR2-dysfunction, independent of IL-6-induced-fibrosis, early contribute to the development of POAF by increasing propensity for arrhythmogenic alternans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.