Multiparty remote state preparation (MRSP) is a procedure for multiparty collaboration with each other for remote preparation of a known quantum state to a distant party. We show that it is possible to achieve a unity fidelity remote preparation of the state by properly choosing the measurement basis. This protocol may be used for converging the split information at one point.
We use the approach of "transitionless quantum driving" proposed by Berry to construct shortcuts to the population transfer and the creation of maximal entanglement between two Λ-type atoms based on the cavity quantum electronic dynamics (CQED) system. An effective Hamiltonian is designed by resorting to an auxiliary excited level, a classical driving field and an extra cavity field mode to supplement or substitute the original reference Hamiltonian, and steer the system evolution along its instantaneous eigenstates in an arbitrarily short time, speeding up the rate of population transfer and creation of maximal entanglement between the two atoms inside a cavity. Numerical simulation demonstrates that our shortcuts' performance is robust against the decoherences caused by atomic spontaneous emission and cavity photon leakage.
Conventional metasurface holograms relying on metal antennas for phase manipulation suffer from strong Ohmic loss and incomplete polarization conversion. The efficiency is limited to rather small values when operating in transmission mode. Here, we implement a high-efficiency transmissive metasurface hologram by leveraging the recently developed Huygens’ metasurface to construct an electric and magnetic sheet with a transmission efficiency up to 86% and optical efficiency of 23.6%. The high-efficiency originates from the simultaneous excitations of the Mie-type electric and magnetic dipole resonances in the meta-atoms composed of silicon nanodisks. Our hologram shows high fidelity over a wide spectral range and promises to be an outstanding alternative for display applications.
In this Letter, we demonstrate theoretically a full-color hologram using spatial multiplexing of dielectric metasurface for three primary colors, capable of reconstructing arbitrary RGB images. The discrete phase maps for the red, green, and blue components of the target image are extracted through a classical Gerchberg-Saxton algorithm and reside in the corresponding subcells of each pixel. Silicon nanobars supporting narrow spectral response at the wavelengths of the three primary colors are employed as the basic meta-atoms to imprint the Pancharatnam-Berry phase while maintaining minimum crosstalk between different colors. The reconstructed holographic images agree well with the target images making it promising for colorful display.
Achieving fast population transfer (FPT) in multiparticle systems based on the cavity quantum electronic dynamics is an outstanding challenge. In this paper, motivated by the quantum Zeno dynamics, a shortcut for performing the FPT of ground states in multiparticle systems with the invariant based inverse engineering is proposed. Numerical simulation demonstrates that a perfect population transfer of ground states in multiparticle systems can be rapidly achieved in one step, and the FPT is robust to both the cavity decay and atomic spontaneous emission.Additionally, this scheme is not only implemented without requiring extra complex conditions, but also insensitive to variations of the parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.