The signaling cascades initiated by motilin receptors in gastric and intestinal smooth muscle cells were characterized. Motilin bound with high affinity (IC 50 0.7 Ϯ 0.2 nM) to receptors on smooth muscle cells; the receptors were rapidly internalized via G protein-coupled receptor kinase 2 (GRK2). Motilin selectively activated G q and G13, stimulated G␣ q-dependent phosphoinositide (PI) hydrolysis and 1,4,5-trisphosphate (IP 3)-dependent Ca 2ϩ release, and increased cytosolic free Ca 2ϩ . PI hydrolysis was blocked by expression of G␣q minigene and augmented by overexpression of dominant negative RGS4(N88S) or GRK2(K220R). Motilin induced a biphasic, concentration-dependent contraction (EC 50 ϭ 1.0 Ϯ 0.2 nM), consisting of an initial peak followed by a sustained contraction. The initial Ca 2ϩ -dependent contraction and myosin light-chain (MLC) 20 phosphorylation were inhibited by the PLC inhibitor U-73122 and the MLC kinase inhibitor ML-9 but were not affected by the Rho kinase inhibitor Y27632 or the PKC inhibitor bisindolylmaleimide. Sustained contraction and MLC 20 phosphorylation were RhoA dependent and mediated by two downstream messengers: PKC and Rho kinase. The latter was partly inhibited by expression of G␣ q or G␣13 minigene and abolished by coexpression of both minigenes. Sustained contraction and MLC 20 phosphorylation were partly inhibited by Y27632 and bisindolylmaleimide and abolished by a combination of both inhibitors. The inhibition reflected phosphorylation of two MLC phosphatase inhibitors: CPI-17 via PKC and MYPT1 via Rho kinase. We conclude that motilin initiates a G␣ q-mediated cascade involving Ca 2ϩ /calmodulin activation of MLC kinase and transient MLC 20 phosphorylation and contraction as well as a sustained G␣ q-and G␣13-mediated, RhoAdependent cascade involving phosphorylation of CPI-17 by PKC and MYPT1 by Rho kinase, leading to inhibition of MLC phosphatase and sustained MLC 20 phosphorylation and contraction.
In smooth muscle of the gut, G(q)-coupled receptor agonists activate preferentially PLC-beta1 to stimulate phosphoinositide (PI) hydrolysis and inositol 1,4,5-trisphosphate (IP(3)) generation and induce IP(3)-dependent Ca(2+) release. Inhibition of Ca(2+) mobilization by cAMP- (PKA) and cGMP-dependent (PKG) protein kinases reflects inhibition of PI hydrolysis by both kinases and PKG-specific inhibitory phosphorylation of IP(3) receptor type I. The mechanism of inhibition of PLC-beta1-dependent PI hydrolysis has not been established. Neither G(q) nor PLC-beta1 was directly phosphorylated by PKA or PKG in gastric smooth muscle cells. However, both kinases 1) phosphorylated regulator of G protein signaling 4 (RGS4) and induced its translocation from cytosol to plasma membrane, 2) enhanced ACh-stimulated association of RGS4 and Galpha(q).GTP and intrinsic Galpha(q).GTPase activity, and 3) inhibited ACh-stimulated PI hydrolysis. RGS4 phosphorylation and inhibition of PI hydrolysis were blocked by selective PKA and PKG inhibitors. Expression of RGS4(S52A), which lacks a PKA/PKG phosphorylation site, blocked the increase in GTPase activity and the decrease in PI hydrolysis induced by PKA and PKG. Blockade of PKA-dependent effects was only partial. Selective phosphorylation of G protein-coupled receptor kinase 2 (GRK2), which contains a RGS domain, by PKA augmented ACh-stimulated GRK2:Galpha(q).GTP association; both effects were blocked in cells expressing GRK2(S685A), which lacks a PKA phosphorylation site. Inhibition of PI hydrolysis induced by PKA was partly blocked in cells expressing GRK2(S685A) and completely blocked in cells coexpressing GRK2(S685A) and RGS4(S52A) or Galpha(q)(G188S), a Galpha(q) mutant that binds GRK2 but not RGS4. The results demonstrate that inhibition of PLC-beta1-dependent PI hydrolysis by PKA is mediated via stimulatory phosphorylation of RGS4 and GRK2, leading to rapid inactivation of Galpha(q).GTP. PKG acts only via phosphorylation of RGS4.
Sustained smooth-muscle contraction or its experimental counterpart, Ca2+ sensitization, by G(q/13)-coupled receptor agonists is mediated via RhoA-dependent inhibition of MLC (myosin light chain) phosphatase and MLC20 (20 kDa regulatory light chain of myosin II) phosphorylation by a Ca2+-independent MLCK (MLC kinase). The present study identified the corresponding pathways initiated by G(i)-coupled receptors. Somatostatin acting via G(i)1-coupled sstr3 receptor, DPDPE ([D-Pen2,D-Pen5]enkephalin; where Pen is penicillamine) acting via G(i)2-coupled delta-opioid receptors, and cyclopentyl adenosine acting via G(i)3-coupled adenosine A1 receptors preferentially activated PI3K (phosphoinositide 3-kinase) and ILK (integrin-linked kinase), whereas ACh (acetylcholine) acting via G(i)3-coupled M2 receptors preferentially activated PI3K, Cdc42 (cell division cycle 42)/Rac1, PAK1 (p21-activated kinase 1) and p38 MAPK (mitogen-activated protein kinase). Only agonists that activated ILK induced sustained CPI-17 (protein kinase C potentiated inhibitor 17 kDa protein) phosphorylation at Thr38, MLC20 phosphorylation at Ser19, and contraction, consistent with recent evidence that ILK can act as a Ca2+-independent MLCK capable of phosphorylating the MLC phosphatase inhibitor, CPI-17, at Thr38. ILK activity, and CPI-17 and MLC20 phosphorylation were inhibited by LY294002 and in muscle cells expressing ILK(R211A) or treated with siRNA (small interfering RNA) for ILK. ACh acting via M2 receptors activated ILK, and induced CPI-17 and MLC20 phosphorylation and muscle contraction, but only after inhibition of p38 MAPK; all these responses were inhibited in cells expressing ILK(R211A). Conversely, ACh activated PAK1, a step upstream of p38 MAPK, whereas the three other agonists did so only in cells transfected with ILK(R211A) or siRNA for ILK. The results demonstrate reciprocal inhibition between two pathways downstream of PI3K, with ILK inhibiting PAK1, and p38 MAPK inhibiting ILK. Sustained contraction via G(i)-coupled receptors is dependent on CPI-17 and MLC20 phosphorylation by ILK.
The current study aims to investigate the significance of N 6-methyladenosine (m 6 A) methylationrelated genes in the clinical prognosis of hepatocellular carcinoma (HCC) using bioinformatics analyses based on The Cancer Genome Atlas (TCGA) database. Transcriptome data and corresponding clinical data on m 6 A methylation-related genes (including 15 genes) were obtained from TCGA database. Differential expression of 15 genes was identified. Survival curves of subgroups based on m 6 A methylation-related gene expression levels were plotted. We selected potential predictive genes and analyzed their prognostic values using bioinformatics methods. Eleven genes (METTL3,
We analyzed the signaling pathways initiated by endothelin receptors ETA and ETB in intestinal circular and longitudinal smooth muscle cells. The response to endothelin-1 (ET-1) consisted of two phases in both cell types. The initial, transient phase of contraction and phosphorylation of 20-kDa myosin light chain (MLC20) was mediated additively by ETA and ETB receptors and initiated by Galphaq-, Ca2+/calmodulin-dependent activation of MLC kinase. In contrast, the sustained phase was mediated selectively by ETA receptors via a pathway involving sequential activation of Galpha13, RhoA, and Rho kinase, resulting in phosphorylation of MYPT1 at Thr696 and phosphorylation of MLC20. Although PKC was activated, CPI-17 was not phosphorylated and hence did not contribute to inhibition of MLC phosphatase. The absence of CPI-17 phosphorylation by PKC reflected active dephosphorylation of CPI-17 by protein phosphatase 2A (PP2A). PP2A was activated via a pathway involving ETB-dependent stimulation of p38 MAPK activity. CPI-17 phosphorylation was unmasked in the presence of the ETB antagonist BQ-788, but not the ETA antagonist BQ-123, and in the presence of a low concentration of okadaic acid, which selectively inactivates PP2A. The resultant phosphorylation of CPI-17 was blocked by bisindolylmaleimide, providing direct confirmation that it was PKC dependent. We conclude that the two phases of the intestinal smooth muscle response to ET-1 involve distinct receptors, G proteins, and signaling pathways. The sustained response is mediated via selective ETA-dependent phosphorylation of MYPT1. In contrast, ETB initiates an inhibitory pathway involving p38 MAPK-dependent activation of PP2A that causes dephosphorylation of CPI-17.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.