In the diagnosis of severe contagious diseases such as Ebola, severe acute respiratory syndrome, and COVID-19, there is an urgent need for protein sensors with large refractive index sensitivities. Current terahertz metamaterials cannot be used to develop such protein sensors due to their low refractive index sensitivities. A simple method is proposed that is compatible with all geometrical structures of terahertz metamaterials to increase their refractive index sensitivities. This method uses patterned photoresist to float the split-ring resonators (SRRs) of a terahertz metamaterial at a height of 30 μm from its substrate that is deposited with complementary SRRs. The floating terahertz metamaterial has an extremely large refractive index sensitivity of 532 GHz/RIU because its near field is not distributed over the substrate and also because the complementary SRRs confine the field above the substrate. The floating terahertz metamaterial senses bovine serum albumin (BSA) and the protein binding of BSA and anti-BSA as BSA, and anti-BSA solutions with low concentrations that are smaller than 0.150 μmol/L are sequentially dropped onto it. The floating terahertz metamaterial is a great achievement to develop protein sensors with extremely large refractive index sensitivities, and has the potential to sense dangerous viruses.
Alumina (Al2O3)-filled multiwalled carbon nanotube buckypapers (BPs) with different Al2O3 loadings (5–50 wt%) were successfully synthesised. Structural and morphological analysis performed with x-ray diffraction and field-emission scanning electron microscopy, respectively, confirmed the presence of stable α-phase Al2O3 particles in the Al2O3-BP composites. The formation of flexible Al2O3-BP hybrid nanocomposites (5–15 wt%) was attributed to the strong interfacial polarisation and high conductivity; compared with pure Al2O3 and BP. The nanocomposites with optimised alumina loadings demonstrated enhanced microwave absorption (>90%) and a broader absorption bandwidth in the investigated high-frequency region.
We report the fabrication of a flexible network of multiwall carbon nanotubes (MWCNTs) known as buckypaper (BP) for thermoelectric (TE) applications. A thermal evaporation method was used to deposit TE metal alloys onto the BP. The TE properties were improved primarily by increasing the Seebeck coefficient values (50 and 75 μV/K) and the electrical conductivity by approximately 10 000 S/m. High-temperature resistivity studies were performed to confirm the semiconductivity of buckypaper. Variations in resistivity were observed to be the result of the metal alloys coated on the BP surface. We also demonstrated that a substantial increase in the Seebeck coefficient values can be obtained by connecting 3 and 5 layers of metal-deposited BP in series, thereby enhancing the TE efficiency of MWCNT-based BP for application in thermoelectric devices.
In the next few years, the home energy management system trend of the smart home will become increasingly evident. From the application and development of recent years, the Bluetooth and Zigbee are the most valued by the industry. Of these two kinds of technology, Zigbee supports low cost and more number of nodes, and with its low power consumption, it is bound to become a major communication feature for the smart home technology. Because Zigbee SEP2.0 specification support multiple network technology features, a product can become compatible with a variety of communication methods to connect with the home network and achieve home automation of functional requirements, facilitating maximum performance of wireless applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.