This paper reports on recent advances at the micro-computed tomography facility at the Australian National University. Since 2000 this facility has been a significant centre for developments in imaging hardware and associated software for image reconstruction, image analysis and image-based modelling. In 2010 a new instrument was constructed that utilises theoretically-exact image reconstruction based on helical scanning trajectories, allowing higher cone angles and thus better utilisation of the available X-ray flux. We discuss the technical hurdles that needed to be overcome to allow imaging with cone angles in excess of 60°. We also present dynamic tomography algorithms that enable the changes between one moment and the next to be reconstructed from a sparse set of projections, allowing higher speed imaging of time-varying samples. Researchers at the facility have also created a sizeable distributed-memory image analysis toolkit with capabilities ranging from tomographic image reconstruction to 3D shape characterisation. We show results from image registration and present some of the new imaging and experimental techniques that it enables. Finally, we discuss the crucial question of image segmentation and evaluate some recently proposed techniques for automated segmentation.
The pore-scale behavior of a nonaqueous phase liquid (NAPL) trapped as residual contamination in a porous medium, subject to freeze-thaw cycles, was investigated by X-ray microcomputed tomography. It is shown that freeze-thaw cycles cause significant NAPL remobilization in the direction of the freezing front, due to the rupture and transport of a significant proportion of (supposedly entrapped) larger multipore NAPL ganglia. Significant NAPL remains in place, however, due to substantial ganglion fragmentation into single- and subpore ganglia. The contraction of branched ganglia into more rounded forms, especially near the top surface, is also observed. Three freezing-induced mechanisms are proposed to explain the results. The findings have important implications for NAPL contamination in cold regions, and for the behavior of water-hydrocarbon systems on the Earth and other planets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.