[1] In this study, we present the collation and analysis of the gridded land-based dataset of indices of temperature and precipitation extremes: HadEX2. Indices were calculated based on station data using a consistent approach recommended by the World Meteorological Organization (WMO) Expert Team on Climate Change Detection and Indices, resulting in the production of 17 temperature and 12 precipitation indices derived from daily maximum and minimum temperature and precipitation observations. High-quality in situ observations from over 7000 temperature and 11,000 precipitation meteorological stations across the globe were obtained to calculate the indices over the period of record available for each station. Monthly and annual indices were then interpolated onto a 3.75 Â 2.5 longitude-latitude grid over the period 1901-2010. Linear trends in the gridded fields were computed and tested for statistical significance. Overall there was very good agreement with the previous HadEX dataset during the overlapping data period. Results showed widespread significant changes in temperature extremes consistent with warming, especially for those indices derived from daily minimum temperature over the whole 110 years of record but with stronger trends in more recent decades. Seasonal results showed significant warming in all seasons but more so in the colder months. Precipitation indices also showed widespread and significant trends, but the changes were much more spatially heterogeneous compared with temperature changes. However, results indicated more areas with significant increasing trends in extreme precipitation amounts, intensity, and frequency than areas with decreasing trends.Citation: Donat, M. G., et al. (2013), Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset,
Long‐term in situ observations are widely used in a variety of climate analyses. Unfortunately, most decade‐ to century‐scale time series of atmospheric data have been adversely impacted by inhomogeneities caused by, for example, changes in instrumentation, station moves, changes in the local environment such as urbanization, or the introduction of different observing practices like a new formula for calculating mean daily temperature or different observation times. If these inhomogeneities are not accounted for properly, the results of climate analyses using these data can be erroneous. Over the last decade, many climatologists have put a great deal of effort into developing techniques to identify inhomogeneities and adjust climatic time series to compensate for the biases produced by the inhomogeneities. It is important for users of homogeneity‐adjusted data to understand how the data were adjusted and what impacts these adjustments are likely to make on their analyses. And it is important for developers of homogeneity‐adjusted data sets to compare readily the different techniques most commonly used today. Therefore, this paper reviews the methods and techniques developed for homogeneity adjustments and describes many different approaches and philosophies involved in adjusting in situ climate data. © 1998 Royal Meteorological Society
The Interdecadal Pacific Oscillation (IPO) has been shown to be associated with decadal climate variability over parts of the Pacific Basin, and to modulate interannual El Niñ o -Southern Oscillation (ENSO)-related climate variability over Australia. Three phases of the IPO have been identified during the 20th century: a positive phase , a negative phase and another positive phase . Climate data are analysed for the two most recent periods to describe the influence of the IPO on decadal climate trends and interannual modulation of ENSO teleconnections throughout the South West Pacific region (from the equator to 55°S, and 150°E to 140°W). Data coverage was insufficient to include the earliest period in the analysis.Mean sea level pressure (SLP) in the region west of 170°W increased for the most recent positive IPO period, compared with the previous negative phase. SLP decreased to the east of 170°W, with generally more southerly quarter geostrophic flow over the region. Annual surface temperature increased significantly southwest of the South Pacific Convergence Zone (SPCZ) at a rate similar to the average Southern Hemisphere warming. Northwest of the SPCZ temperature increases were less, and northeast of the SPCZ more than the hemispheric warming in surface temperature. Increases of annual precipitation of 30% or more occurred northeast of the SPCZ, with smaller decreases to the southwest, associated with a movement in the mean location of the SPCZ northeastwards. The IPO modulates teleconnections with ENSO in a complex way, strengthening relationships in some areas and weakening them in others. For New Zealand, there is a consistent bias towards stronger teleconnections for the positive IPO period.These results demonstrate that the IPO is a significant source of climate variation on decadal time scales throughout the South West Pacific region, on a background which includes global mean surface temperature increases. The IPO also modulates interannual ENSO climate variability over the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.