This paper reports a study on a method for achieving lightweight thermoplastic laminate composites referred to as tow spreading technology. Thickness of an unspread 12 K carbon fiber tow is reduced by increasing the tow width from 7 mm to 20 mm. The polypropylene (PP) film was used to stabilize and impregnate the spread tow, covering it into a partially consolidated prepreg: 12 K carbon fiber spread tow/PP. Laminates were fabricated from the spread tow prepreg and control laminate composites were produced from unspread tow prepreg consisting of 12 K carbon fiber and PP. The void content, tensile and flexural properties of the composite laminates were investigated. Consequently, the spread tow laminate composite exhibited lower void content and improved mechanical properties.
Delamination resistance and epoxy matrix brittle fracture have been the main issues in carbon/epoxy composites laminates. Various studies have been reported to complement the brittle fracture of epoxy matrix. Conventional methods of fabricating toughened carbon/epoxy composite laminates were thermo-plastic veils and films interleaving methods, directly toughening the matrix resin and dispersing nanoparticles in the matrix. In this study, the carbon/epoxy composites laminates were manufactured using carbon fiber/polyamide fiber braided fabrics. The chemical interactions between polyamide and epoxy matrix resin were investigated by Fourier transform infrared spectroscopy, which resulted in ring opening of the epoxide group by the amide group. The compression after impact strength and the interlaminar toughness of the carbon/epoxy composite laminate were increased by 31%, and the strain energy release rates were increased by 120% compared to the virgin interface composite. In the case of carbon/epoxy composite laminates interlaced with polyamide fibers, the mechanical properties, such as the tensile strength and fatigue properties, were improved as tensile modulus decreased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.