BackgroundEvidence of the short-term effects of ambient air pollution on the risk of ischemic stroke in low- and middle-income countries is limited and inconsistent. We aimed to examine the associations between air pollution and daily hospital admissions for ischemic stroke in China.Methods and findingsWe identified hospital admissions for ischemic stroke in 2014–2016 from the national database covering up to 0.28 billion people who received Urban Employee Basic Medical Insurance (UEBMI) in China. We examined the associations between air pollution and daily ischemic stroke admission using a two-stage method. Poisson time-series regression models were firstly fitted to estimate the effects of air pollution in each city. Random-effects meta-analyses were then conducted to combine the estimates. Meta-regression models were applied to explore potential effect modifiers. More than 2 million hospital admissions for ischemic stroke were identified in 172 cities in China. In single-pollutant models, increases of 10 μg/m3 in particulate matter with aerodynamic diameter <2.5 μm (PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) and 1 mg/m3 in carbon monoxide (CO) concentrations were associated with 0.34% (95% confidence interval [CI], 0.20%–0.48%), 1.37% (1.05%–1.70%), 1.82% (1.45%–2.19%), 0.01% (−0.14%–0.16%), and 3.24% (2.05%–4.43%) increases in hospital admissions for ischemic stroke on the same day, respectively. SO2 and NO2 associations remained significant in two-pollutant models, but not PM2.5 and CO associations. The effect estimates were greater in cities with lower air pollutant levels and higher air temperatures, as well as in elderly subgroups. The main limitation of the present study was the unavailability of data on individual exposure to ambient air pollution.ConclusionsAs the first national study in China to systematically examine the associations between short-term exposure to ambient air pollution and ischemic stroke, our findings indicate that transient increase in air pollution levels may increase the risk of ischemic stroke, which may have significant public health implications for the reduction of ischemic stroke burden in China.
ObjectiveTo estimate the risks of daily hospital admissions for cause specific major cardiovascular diseases associated with short term exposure to ambient fine particulate matter (aerodynamic diameter ≤2.5 μm; PM2.5) pollution in China.DesignNational time series study.Setting184 major cities in China.Population8 834 533 hospital admissions for cardiovascular causes in 184 Chinese cities recorded by the national database of Urban Employee Basic Medical Insurance from 1 January 2014 to 31 December 2017.Main outcome measuresDaily counts of city specific hospital admissions for primary diagnoses of ischaemic heart disease, heart failure, heart rhythm disturbances, ischaemic stroke, and haemorrhagic stroke among different demographic groups were used to estimate the associations between PM2.5 and morbidity. An overdispersed generalised additive model was used to estimate city specific associations between PM2.5 and cardiovascular admissions, and random effects meta-analysis used to combine the city specific estimates.ResultsOver the study period, a mean of 47 hospital admissions per day (standard deviation 74) occurred for cardiovascular disease, 26 (53) for ischaemic heart disease, one (five) for heart failure, two (four) for heart rhythm disturbances, 14 (28) for ischaemic stroke, and two (four) for haemorrhagic stroke. At the national average level, an increase of 10 μg/m3 in PM2.5 was associated with a 0.26% (95% confidence interval 0.17% to 0.35%) increase in hospital admissions on the same day for cardiovascular disease, 0.31% (0.22% to 0.40%) for ischaemic heart disease, 0.27% (0.04% to 0.51%) for heart failure, 0.29% (0.12% to 0.46%) for heart rhythm disturbances, and 0.29% (0.18% to 0.40%) for ischaemic stroke, but not with haemorrhagic stroke (−0.02% (−0.23% to 0.19%)). The national average association of PM2.5 with cardiovascular disease was slightly non-linear, with a sharp slope at PM2.5 levels below 50 μg/m3, a moderate slope at 50-250 μg/m3, and a plateau at concentrations higher than 250 μg/m3. Compared with days with PM2.5 up to 15 μg/m3, days with PM2.5 of 15-25, 25-35, 35-75, and 75 μg/m3 or more were significantly associated with increases in cardiovascular admissions of 1.1% (0 to 2.2%), 1.9% (0.6% to 3.2%), 2.6% (1.3% to 3.9%), and 3.8% (2.1% to 5.5%), respectively.According to projections, achieving the Chinese grade 2 (35 μg/m3), Chinese grade 1 (15 μg/m3), and World Health Organization (10 μg/m3) regulatory limits for annual mean PM2.5 concentrations would reduce the annual number of admissions for cardiovascular disease in China. Assuming causality, which should be done with caution, this reduction would translate into an estimated 36 448 (95% confidence interval 24 441 to 48 471), 85 270 (57 129 to 113 494), and 97 516 (65 320 to 129 820), respectively.ConclusionsThese data suggest that in China, short term exposure to PM2.5 is associated with increased hospital admissions for all major cardiovascular diseases except for haemorrhagic stroke, even for exposure levels not exceeding the current regulatory limits.
Proanthocyanidins (PCs) are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerous in vitro and in vivo studies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, anti-inflammation, immunomodulation, DNA repair, and antitumor activity. Accumulation of prooxidants such as reactive oxygen species (ROS) exceeding cellular antioxidant capacity results in oxidative stress (OS), which can damage macromolecules (DNA, lipids, and proteins), organelles (membranes and mitochondria), and whole tissues. OS is implicated in the pathogenesis and exacerbation of many cardiovascular, neurodegenerative, dermatological, and metabolic diseases, both through direct molecular damage and secondary activation of stress-associated signaling pathways. PCs are promising natural agents to safely prevent acute damage and control chronic diseases at relatively low cost. In this review, we summarize the molecules and signaling pathways involved in OS and the corresponding therapeutic mechanisms of PCs.
Pruritus, the most common cutaneous symptom, is widely seen in many skin complaints. It is an uncomfortable feeling on the skin and sometimes impairs patients' quality of life. At present, the specific mechanism of pruritus still remains unclear. Antihistamines, which are usually used to relieve pruritus, ineffectively work in some patients with itching. Recent evidence has suggested that, apart from histamine, many mediators and signaling pathways are involved in the pathogenesis of pruritus. Various therapeutic options for itching correspondingly have been developed. In this review, we summarize the updated pathogenesis and therapeutic strategies for pruritus.
ObjectivesDiverse evidence including clinical, genetic and microbiome studies support a major role of the gut microbiome in the common immune-mediated arthropathy, ankylosing spondylitis (AS). We set out to (1) further define the key microbial characteristics driving disease, and (2) examine the effects of tumour necrosis factor-inhibitor (TNFi) therapy upon the microbiome.MethodsThe stools from a case–control cohort of 250 Han-Chinese subjects underwent shotgun metagenomic sequencing. All subjects were genotyped using the Illumina CoreExome SNP microarray.ResultsPrevious reports of gut dysbiosis in AS were reconfirmed and several notable bacterial species and functional categories were differentially abundant. TNFi therapy was correlated with a restoration the perturbed microbiome observed in untreated AS cases to that of healthy controls, including several important bacterial species that have been previously associated with AS and other related diseases. Enrichment of bacterial peptides homologous to HLA-B27-presented epitopes was observed in the stools of patients with AS, suggesting that either HLA-B27 fails to clear these or that they are involved in driving HLA-B27-associated immune reactions. TNFi therapy largely restored the perturbed microbiome observed in untreated AS cases to that of healthy controls, including several important bacterial species that have been previously associated with AS and other related diseases. TNFi therapy of patients with AS was also associated with a reduction of potentially arthritogenic bacterial peptides, relative to untreated patients.ConclusionThese findings emphasise the key role that the gut microbiome plays in driving the pathogenesis of AS and highlight potential therapeutic and/or preventative targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.