Malware classification plays an important role in tracing the attack sources of computer security. However, existing static analysis methods are fast in classification, but they are inefficient in some malware using packing and obfuscation techniques; the dynamic analysis methods have better universality for packing and obfuscation, but they will cause excessive classification cost. To overcome these shortcomings, in this paper, we propose a classification system Malscore based on the probability scoring and machine learning, which sets the probability threshold to concatenate static analysis (called Phase 1) and dynamic analysis (called Phase 2). The convolutional neural networks with spatial pyramid pooling were used to analyze the grayscale images (static features) in Phase 1, and the variable n-grams and machine learning were used to analyze the native API call sequences (dynamic features) in Phase 2. Malscore combined static analysis with dynamic analysis not only accelerated the static analysis process by taking advantage of the CNN in image recognition but also appeared to be more resilient to obfuscation by the dynamic analysis. Different from other static and dynamic analysis techniques, when malware is detected, due to the fact that malware will most likely be labeled only by static analysis, we could reduce the overheads by dynamically analyzing a few malware that has less obvious features or greater confusion in static analysis. We performed experiments on 174 607 malware samples from 63 malware families. The result showed that Malscore achieved 98.82% accuracy for malware classification. Furthermore, Malscore was compared with the method of using static and dynamic analysis. The preprocessing and test time represented a reduction of 59.58% and 61.70%, respectively. INDEX TERMS Grayscale image, native API call, malware, machine learning, probability scoring, static and dynamic analysis.
Information security is an important research area. As a very special yet important case, malware classification plays an important role in information security. In the real world, the malware datasets are open-ended and dynamic, and new malware samples belonging to old classes and new classes are increasing continuously. This requires the malware classification method to enable incremental learning, which can efficiently learn the new knowledge. However, existing works mainly focus on feature engineering with machine learning as a tool. To solve the problem, we present an incremental malware classification framework, named “IMC,” which consists of opcode sequence extraction, selection, and incremental learning method. We develop an incremental learning method based on multiclass support vector machine (SVM) as the core component of IMC, named “IMCSVM,” which can incrementally improve its classification ability by learning new malware samples. In IMC, IMCSVM adds the new classification planes (if new samples belong to a new class) and updates all old classification planes for new malware samples. As a result, IMC can improve the classification quality of known malware classes by minimizing the prediction error and transfer the old model with known knowledge to classify unknown malware classes. We apply the incremental learning method into malware classification, and the experimental results demonstrate the advantages and effectiveness of IMC.
Breast cancer is the most common cancer and second leading cause of cancer death among women in the US. The relative survival rate is lower among women with a more advanced stage at diagnosis. Early detection through screening is vital. Mammography is the most widely used and only proven screening method for reliably and effectively detecting abnormal breast tissues. In particular, mammographic density is one of the strongest breast cancer risk factors, after age and gender, and can be used to assess the future risk of disease before individuals become symptomatic. A reliable method for automatic density assessment would be beneficial and could assist radiologists in the evaluation of mammograms. To address this problem, we propose a density classification method which uses statistical features from different parts of the breast. Our method is composed of three parts: breast region identification, feature extraction and building ensemble classifiers for density assessment. It explores the potential of the features extracted from second and higher order statistical information for mammographic density classification. We further investigate the registration of bilateral pairs and time-series of mammograms. The experimental results on 322 mammograms demonstrate that (1) a classifier using features from dense regions has higher discriminative power than a classifier using only features from the whole breast region; (2) these high-order features can be effectively combined to boost the classification accuracy; (3) a classifier using these statistical features from dense regions achieves 75% accuracy, which is a significant improvement from 70% accuracy obtained by the existing approaches.
Stack overflow vulnerabilities are among the most common security issues. However, the existing stack overflow detection solutions only protect the return address and ignore the imbalance between function calls and returns in the system, which will lead to a higher false-positive rate. In this paper, we propose an instruction reorganization virtual platform technique for kernel stack overflow detection, named IRePf. It can dynamically monitor the kernel stack when the system is running through dynamic reorganization instructions, thread creation and termination, call instructions, and RET instructions. IRePf uses backup stack creation and destruction technology to back up the return address and the address of the return address at the same time. IRePf determines whether the stack overflow occurs in the system when the function call and return are unbalanced to realize the kernel stack overflow detection. The experimental results show that IRePf can effectively detect stack overflow attacks, has low system resource occupancy and high real-time performance, and effectively improves the ability and security of defense stack attacks.
Current network security is becoming increasingly important, and intrusion detection is an effective method to protect the network from malicious attacks. This study proposes an intrusion detection algorithm FLTrELM based on federated transfer learning and an extreme learning machine to improve the effect of intrusion detection, which implements data aggregation through federated learning and facilitates the construction of personalized transfer learning for all organizations. FLTrELM first builds a transfer extreme learning machine model to solve the problem of insufficient samples and probability adaptation, then uses the model to learn to protect data privacy without sharing training data under the federated learning mechanism, and finally obtains an intrusion detection model. Experiments on the NSL-KDD, KDD99, and ISCX2012 datasets verify that the proposed method can achieve better detection results and robust performance, especially for small samples and new intrusions, and protects data privacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.