To improve the performance of named entity recognition in the lack of well-annotated entity data, a transfer learning-based Chinese named entity recognition model is proposed in this paper. The specific tasks are as follows: (1) first/, a data transfer method based on entity features is proposed. By calculating the similarity of feature distribution between low resource data and high resource data, the most representative entity features are selected for feature transfer mapping, and the distance of entity distribution between the two domains is calculated to make up the gap between the data of the two domains then model is trained by high resource data. (2) Then, an entity boundary detection method is proposed. This method utilizes the BiLSTM+CRF as the main structure and integrates character boundary information to assist the attention network to improve the model’s ability to recognize entity boundaries. (3) Finally, multiple named entity recognition methods are selected as baseline methods for comparison, and experiments are conducted on several datasets. The results show that the model proposed in this paper improves the accuracy of named entity recognition by 1%, the recall rate by 2%, and the F1 value by 2% on average in the field with low-resource.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.