The trans-RuIICl2 complexes with structurally similar N,N‘-bis[o-(diphenylphosphino)benzylidene]cyclohexane-1,2-diamine and N,N‘-bis[o-(diphenylphosphino)benzyl]cyclohexane-1,2-diamine ligands have been synthesized, and their molecular structures have been determined. The C 2-symmetric diphosphine/diamine-based Ru complex acts as an excellent catalyst precursor in asymmetric transfer hydrogenation of acetophenone in a 0.1 M 2-propanol solution, leading to 2-phenylethanol in 97% ee and in 93% yield after 7 h at 45 °C. This transfer hydrogenation is characterized by low reversibility under these conditions.
Chiral alcohols are important building blocks in the pharmaceutical and fine chemical industries. The enantioselective reduction of prochiral ketones catalyzed by transition metal complexes, especially asymmetric transfer hydrogenation (ATH) and asymmetric hydrogenation (AH), is one of the most efficient and practical methods for producing chiral alcohols. In both academic laboratories and industrial operations, catalysts based on noble metals such as ruthenium, rhodium, and iridium dominated the asymmetric reduction of ketones. However, the limited availability, high price, and toxicity of these critical metals demand their replacement with abundant, nonprecious, and biocommon metals. In this respect, the reactions catalyzed by first-row transition metals, which are more abundant and benign, have attracted more and more attention. As one of the most abundant metals on earth, iron is inexpensive, environmentally benign, and of low toxicity, and as such it is a fascinating alternative to the precious metals for catalysis and sustainable chemical manufacturing. However, iron catalysts have been undeveloped compared to other transition metals. Compared with the examples of iron-catalyzed asymmetric reduction, cobalt- and nickel-catalyzed ATH and AH of ketones are even seldom reported. In early 2004, we reported the first ATH of ketones with catalysts generated in situ from iron cluster complex and chiral PNNP ligand. Since then, we have devoted ourselves to the development of ATH and AH of ketones with iron, cobalt, and nickel catalysts containing novel chiral aminophosphine ligands. In our study, the iron catalyst containing chiral aminophosphine ligands, which are expected to control the stereochemistry at the metal atom, restrict the number of possible diastereoisomers, and effectively transfer chiral information, are successful catalysts for enantioselective reduction of ketones. Among these novel chiral aminophosphine ligands, 22-membered macrocycle P2N4 exhibited extraordinary enantioselectivities when combined with iron(0) cluster Fe3(CO)12. A broad scope of ketones including aromatic, heteroaromatic, and β-ketoesters can be reduced smoothly with excellent enantioselectivities (up to 99% ee) approaching or exceeding those achievable with the noble metal catalysts. Notably, the chiral iron-based catalyst proved to be highly efficient for both ATH as well as AH of various ketones. Until now, such "universal" catalyst is very rare. Preliminary studies suggest that the AH reaction most likely involved iron particles as the active catalytic species. These research results point to a new direction in developing viable effective nonprecious metal catalysts for asymmetric reduction and probably for other asymmetric catalytic reactions as well.
The integration of Global Positioning Systems (GPS) with Inertial Navigation Systems (INS) has been very actively studied and widely applied for many years. Some sensors and artificial intelligence methods have been applied to handle GPS outages in GPS/INS integrated navigation. However, the integrated system using the above method still results in seriously degraded navigation solutions over long GPS outages. To deal with the problem, this paper presents a GPS/INS/odometer integrated system using a fuzzy neural network (FNN) for land vehicle navigation applications. Provided that the measurement type of GPS and odometer is the same, the topology of a FNN used in a GPS/INS/odometer integrated system is constructed. The information from GPS, odometer and IMU is input into a FNN system for network training during signal availability, while the FNN model receives the observations from IMU and odometer to generate odometer velocity correction to enhance resolution accuracy over long GPS outages. An actual experiment was performed to validate the new algorithm. The results indicate that the proposed method can improve the position, velocity and attitude accuracy of the integrated system, especially the position parameters, over long GPS outages. K E Y
Novel P 2 N 4 -donors containing chiral 22membered macrocyclic ligands have been synthesized and the structures have been determined by an X-ray diffraction study. The catalytic systems in situ generated from triiron dodecarbonyl, Fe 3 (CO) 12 , and the chiral macrocyclic ligand exhibited high activity (TOF up to 1940 h À1 ) and excellent enantioselectivity with up to 99% ee in the asymmetric transfer hydrogenation of various aromatic ketones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.