Thiophene-containing porphyrin compounds are capable of catalytic, photo-reductive dehalogenation on an array of α-halo ketone model substrates with low catalyst loadings (0.1 mol%), in the presence of low energy, red light (>645 nm).
The thermodynamic and kinetic study of the repair reactions of three damaged aliphatic amino acids (alanine, valine, and leucine) with dihydrolipoic acid (DHLA) in a polar and a nonpolar solvent is presented in this work. Two simplified protein models were explored in the most common conformations (alpha helix and beta sheet). Calculations are performed at the M06-2X-SMD/6-31++G(d,p) level of theory. DHLA has shown to be an excellent antioxidant repair agent through hydrogen-transfer reaction involving the thiol groups, with rate constants close to diffusion control in most cases. The stability of the initial protein radical is not the most important factor determining the rate of the repair reaction because stabilizing intermolecular interactions involving the protein and the antioxidant can provide additional stability to some transition states accelerating the repair of sites that would otherwise not be so quickly repaired.
Photo-mediated ring expansion using UV-A light. 22 examples, 75–96% yield. The mechanism was investigated by DFT and Transient Absorption Spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.