Presenilins are components of the gamma-secretase protein complex that mediates intramembranous cleavage of betaAPP and Notch proteins. A C. elegans genetic screen revealed two genes, aph-1 and pen-2, encoding multipass transmembrane proteins, that interact strongly with sel-12/presenilin and aph-2/nicastrin. Human aph-1 and pen-2 partially rescue the C. elegans mutant phenotypes, demonstrating conserved functions. The human genes must be provided together to rescue the mutant phenotypes, and the inclusion of presenilin-1 improves rescue, suggesting that they interact closely with each other and with presenilin. RNAi-mediated inactivation of aph-1, pen-2, or nicastrin in cultured Drosophila cells reduces gamma-secretase cleavage of betaAPP and Notch substrates and reduces the levels of processed presenilin. aph-1 and pen-2, like nicastrin, are required for the activity and accumulation of gamma-secretase.
The Caenorhabditis elegans sel-10 protein is structurally similar to E3 ubiquitin ligases and is a negative regulator of Notch (lin-12) and presenilin signaling. In this report, we characterize the mammalian Sel-10 homolog (mSel-10) and analyze its effects on Notch signaling. We find that mSel-10 localizes to the cell nucleus, and that it physically interacts with the Notch 1 intracellular domain (IC) and reduces Notch 1 IC-mediated activation of the HES 1 promoter. Notch 1 IC is ubiquitinated by mSel-10, and ubiquitination requires the presence of the most carboxyl-terminal region of the Notch IC, including the PEST domain. In the presence of the proteasome inhibitor MG132, the amount of Notch 1 IC and its level of ubiquitination are increased. Interestingly, this accumulation of Notch 1 IC in the presence of MG132 is accompanied by decreased activation of the HES 1 promoter, suggesting that ubiquitinated Notch 1 IC is a less potent transactivator. Finally, we show that mSel-10 itself is ubiquitinated and degraded by the proteasome. In conclusion, these data reveal the importance of ubiquitination and proteasome-mediated degradation for the activity and turnover of Notch ICs, and demonstrate that mSel-10 plays a key role in this process.
Notch receptors and their ligands play important roles in both normal animal development and pathogenesis. We show here that the F-box/WD40 repeat protein SEL-10 negatively regulates Notch receptor activity by targeting the intracellular domain of Notch receptors for ubiquitin-mediated protein degradation. Blocking of endogenous SEL-10 activity was done by expression of a dominant-negative form containing only the WD40
In Alzheimer's disease brains, more than 90% of pyramidal neurons in lamina V and 70% in lamina III displayed 2- to 5-fold elevated levels of cathepsin D (Cat D) mRNA by in situ hybridization compared with neurologically normal controls. Most of these cells appeared histologically normal. The less vulnerable nonpyramidal neuron population in lamina IV had relatively normal message levels. Neuronal populations expressing more Cat D mRNA also displayed quantitatively increased Cat D immunoreactive protein. Cat D mRNA expression was only moderately increased in astrocytes. Degenerating neurons exhibited intense immunoreactivity but lowered Cat D mRNA levels. The upregulation of Cat D synthesis and accumulation of hydrolase-laden lysosomes indicate an early activation of the endosomal-lysosomal system in vulnerable neuronal populations, possibly reflecting early regenerative or repair processes. These abnormalities also represent a basis for altered regulation of amyloid precursor protein processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.