The Chinese visceral adiposity index (CVAI) is a recently developed indicator of visceral adiposity. We investigated the predictive value of the CVAI for the development of dysglycemia (pre-diabetes and type 2 diabetes) and compared its predictive power with that of the Visceral adiposity index (VAI) and various anthropometric indices. This community-based study included 2,383 participants. We assessed the predictive power of adiposity indices by performing univariate and multivariate binary logistic regression analysis and calculating the area under the receiver-operating characteristic (ROC) curve according to their quartiles. Logistic regression analysis showed that individuals in higher CVAI quartiles at baseline were more likely to develop dysglycemia than those in lower CVAI quartiles. The area under the ROC curve for CVAI was significantly higher than that of other adiposity indices. In addition, among the various adiposity indices tested, the CVAI had the greatest Youden index for identifying dysglycemia in both genders. Our data demonstrate that the CVAI is a better predictor of type 2 diabetes and pre-diabetes than the VAI, BMI, waist circumference, waist-to-hip ratio and waist-to-height ratio in Chinese adults.
Endothelial dysfunction promotes the pathogenesis of diabetic nephropathy (DN), which is considered to be an early event in disease progression. However, the molecular changes associated with glomerular endothelial cell (GEC) injury in early DN are not well defined. Most gene expression studies have relied on the indirect assessment of GEC injury from isolated glomeruli or renal cortices. Here, we present transcriptomic analysis of isolated GECs, using streptozotocin-induced diabetic wildtype (STZ-WT) and diabetic eNOS-null (STZ-eNOS) mice as models of mild and advanced DN, respectively. GECs of both models in comparison to their respective nondiabetic controls showed significant alterations in the regulation of apoptosis, oxidative stress, and proliferation. The extent of these changes was greater in STZ-eNOS than in STZ-WT GECs. Additionally, genes in STZ-eNOS GECs indicated further dysregulation in angiogenesis and epigenetic regulation. Moreover, a biphasic change in the number of GECs, characterized by an initial increase and subsequent decrease over time, was observed only in STZ-eNOS mice. This is consistent with an early compensatory angiogenic process followed by increased apoptosis, leading to an overall decrease in GEC survival in DN progression. From the genes altered in angiogenesis in STZ-eNOS GECs, we identified potential candidate genes, Lrg1 and Gpr56, whose function may augment diabetes-induced angiogenesis. Thus, our results support a role for GEC in DN by providing direct evidence for alterations of GEC gene expression and molecular pathways. Candidate genes of specific pathways, such as Lrg1 and Gpr56, can be further explored for potential therapeutic targeting to mitigate the initiation and progression of DN.
The development of Econophysics is studied from the perspective of scientific communication networks. Papers in Econophysics published from 1992 to 2003 are collected. Then a weighted and directed network of scientific communication, including collaboration, citation and personal discussion, is constructed. Its static geometrical properties, including degree distribution, weight distribution, weight per degree, and betweenness centrality, give a nice overall description of the research works. The way we introduced here to measure the weight of connections can be used as a general one to construct weighted network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.