Magnesium (Mg) alloys, as the lightest metal engineering materials, have broad application prospects. However, the strength and ductility of traditional Mg alloys are still relativity low and difficult to improve simultaneously. Refining grain size via the deformation process based on the grain boundary strengthening and the transition of deformation mechanisms is one of the feasible strategies to prepare Mg alloys with high strength and high ductility. In this review, the effects of grain size on the strength and ductility of Mg alloys are summarized, and fine-grained Mg alloys with high strength and high ductility developed by various severe plastic deformation technologies and improved traditional deformation technologies are introduced. Although some achievements have been made, the effects of grain size on various Mg alloys are rarely discussed systematically and some key mechanisms are unclear or lack direct microscopic evidence. This review can be used as a reference for further development of high-performance fine-grained Mg alloys.
Biodegradable magnesium (Mg) alloys are known as "the new generation of biomedical metal materials". However, high degradation rates restrict their clinical application. To overcome this issue, a new and simple method for producing of protective coating based on hydrothermal synthesis at 200 °C in 0.5 M NaHCO3 was elaborated. The microstructure, elemental and phase composition of the produced films were examined by scanning electron microscope (SEM), X-ray energy-dispersive spectrometer (EDS) and X-ray diffraction (XRD). The mechanical strength of the protective coating was evaluated by grid scribing method. The corrosion protection effect was evaluated using linear sweep voltammogram (LSV) and electrochemical impedance spectroscopy (EIS) methods in the simulated body fluid (SBF). Since the corrosion process is accompanied by stoichiometric evolution of hydrogen, the amount of the latter was measured to quantify the overall corrosion rate. Both the coatings morphology and phase composition were sensitive to the treatment duration. The coating formed after 0.5 h was loose and mainly consisted of spherical flower-like Mg5(CO3)4(OH)2·4H2O accompanied by small amounts of Mg(OH)2. The treatment duration of 3 h resulted in a thicker compact coating composed mainly of irregular granular MgCO3 as well as Mg(OH)2. The coating providing the most effective protection and uniform corrosion was achieved by 2 h treatment at 200 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.