The success of deep convolutional neural networks (NNs) on image classification and recognition tasks has led to new applications in very diversified contexts, including the field of medical imaging. In this paper, we investigate and propose NN architectures for automated multiclass segmentation of anatomical organs in chest radiographs (CXRs), namely for lungs, clavicles, and heart. We address several open challenges including model overfitting, reducing number of parameters, and handling of severely imbalanced data in CXR by fusing recent concepts in convolutional networks and adapting them to the segmentation problem task in CXR. We demonstrate that our architecture combining delayed subsampling, exponential linear units, highly restrictive regularization, and a large number of high-resolution low-level abstract features outperforms state-of-the-art methods on all considered organs, as well as the human observer on lungs and heart. The models use a multiclass configuration with three target classes and are trained and tested on the publicly available Japanese Society of Radiological Technology database, consisting of 247 X-ray images the ground-truth masks for which are available in the segmentation in CXR database. Our best performing model, trained with the loss function based on the Dice coefficient, reached mean Jaccard overlap scores of 95% for lungs, 86.8% for clavicles, and 88.2% for heart. This architecture outperformed the human observer results for lungs and heart.
Fig. 1: Neural projections in the brain of the fruit fly visualized using the BrainGazer system. Abstract-Neurobiology investigates how anatomical and physiological relationships in the nervous system mediate behavior. Molecular genetic techniques, applied to species such as the common fruit fly Drosophila melanogaster, have proven to be an important tool in this research. Large databases of transgenic specimens are being built and need to be analyzed to establish models of neural information processing. In this paper we present an approach for the exploration and analysis of neural circuits based on such a database. We have designed and implemented BrainGazer, a system which integrates visualization techniques for volume data acquired through confocal microscopy as well as annotated anatomical structures with an intuitive approach for accessing the available information. We focus on the ability to visually query the data based on semantic as well as spatial relationships. Additionally, we present visualization techniques for the concurrent depiction of neurobiological volume data and geometric objects which aim to reduce visual clutter. The described system is the result of an ongoing interdisciplinary collaboration between neurobiologists and visualization researchers.
Quality of segmentations obtained by 3D Active Appearance Models (AAMs) crucially depends on underlying training data. MRI heart data, however, often come noisy, incomplete, with respiratoryinduced motion, and do not fulfill necessary requirements for building an AAM. Moreover, AAMs are known to fail when attempting to model local variations. Inspired by the recent work on split models [1] we propose an alternative to the methods based on pure 3D AAM segmentation. We interconnect a set of 2D AAMs by a 3D shape model. We show that our approach is able to cope with imperfect data and improves segmentations by 11% on average compared to 3D AAMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.