Magnetic macroporous PGMA and PHEMA microspheres containing carboxyl groups are synthesized by multi-step swelling and polymerization followed by precipitation of iron oxide inside the pores. The microspheres are characterized by SEM, IR spectroscopy, AAS, and zeta-potential measurements. Their functional groups enable bioactive ligands of various sizes and chemical structures to couple covalently. The applicability of these monodisperse magnetic microspheres in biospecific catalysis and bioaffinity separation is confirmed by coupling with the enzyme trypsin and huIgG. Trypsin-modified magnetic PGMA-COOH and PHEMA-COOH microspheres are investigated in terms of their enzyme activity, operational and storage stability. The presence of IgG molecules on microspheres is confirmed.
This paper is focused on a simple preparation of functional acrylic latex coating binders comprising embedded nanoparticles originating from ZnO and MgO, respectively, in the role of interfacial ionic self-crosslinking agents. The incorporation of surface-untreated powdered nano-oxides into the coating binder was achieved in the course of the latex synthesis performed by a technique of the two-step emulsion polymerization. By means of this technological approach, latexes comprising dispersed nanoparticles in the content of ca 0.5–1.1 wt % (based on solids) were successfully prepared. For the interfacial covalent self-crosslinking, diacetone acrylamide repeat units were introduced into the latex polymer to ensure functionalities for the subsequent reaction with adipic acid dihydrazide. The latex storage stability and coating performance were compared with respect to the type and concentration of the incorporated nanoparticles. It was determined that all latex coating binders comprising nanoparticles exhibited long-term storage stability and provided interfacially crosslinked transparent smooth coating films of high gloss, excellent solvent resistance, and favorable physico-mechanical properties. Moreover, latexes with embedded nanoparticles, which originated from MgO, manifested a pronounced drop in minimum film forming temperature and provided highly water whitening resistant coating films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.