In order to achieve the attitude maneuver performance of the noncontact close-proximity formation satellite architecture, this paper presents a compound control strategy with variable-parameter sliding mode control and disturbance observer-based feedforward compensation. Firstly, the variable-parameter sliding mode control is proposed to guarantee the attitude maneuver performance of the payload module. Secondly, the collision avoiding control with disturbance observer-based feedforward compensation is proposed to guarantee the synchronization of the two separated modules within the small air clearance constraint of the noncontact Lorentz actuator. Finally, a physical air-floating platform is established to verify the effectiveness of the proposed approach.
The cablelessness of non-contact close-proximity formation satellites can fundamentally avoid the influence of non-contact interface coupling effects and can further enhance the attitude pointing accuracy and stability of the payload module (PM). However, it also brings the problem of limited on-board resources and system latency. In this paper, an event-triggered attitude tracking controller of the support module (SM) that avoids the Zeno phenomenon was proposed. The update time of the control signal was determined by the event-triggering mechanism based on intermediate variables, thus, reducing the communication burden and actuator asynchrony between the two modules. The feasibility and effectiveness of the proposed approach was demonstrated by numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.