[1] The new Max-Planck-Institute Earth System Model (MPI-ESM) is used in the Coupled Model Intercomparison Project phase 5 (CMIP5) in a series of climate change experiments for either idealized CO 2 -only forcing or forcings based on observations and the Representative Concentration Pathway (RCP) scenarios. The paper gives an overview of the model configurations, experiments related forcings, and initialization procedures and presents results for the simulated changes in climate and carbon cycle. It is found that the climate feedback depends on the global warming and possibly the forcing history. The global warming from climatological 1850 conditions to 2080-2100 ranges from 1.5 C under the RCP2.6 scenario to 4.4 C under the RCP8.5 scenario. Over this range, the patterns of temperature and precipitation change are nearly independent of the global warming. The model shows a tendency to reduce the ocean heat uptake efficiency toward a warmer climate, and hence acceleration in warming in the later years. The precipitation sensitivity can be as high as 2.5% K 21 if the CO 2 concentration is constant, or as small as 1.6% K 21, if the CO 2 concentration is increasing. The oceanic uptake of anthropogenic carbon increases over time in all scenarios, being smallest in the experiment forced by RCP2.6 and largest in that for RCP8.5. The land also serves as a net carbon sink in all scenarios, predominantly in boreal regions. The strong tropical carbon sources found in the RCP2.6 and RCP8.5 experiments are almost absent in the RCP4.5 experiment, which can be explained by reforestation in the RCP4.5 scenario.Citation: Giorgetta, M. A., et al. (2013), Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth Syst., 5, 572-597,
Abstract. Changes in marine net primary productivity (PP) and export of particulate organic carbon (EP) are projected over the 21st century with four global coupled carbon cycleclimate models. These include representations of marine ecosystems and the carbon cycle of different structure and complexity. All four models show a decrease in global mean PP and EP between 2 and 20% by 2100 relative to preindustrial conditions, for the SRES A2 emission scenario. Two different regimes for productivity changes are consistently identified in all models. The first chain of mechanisms is dominant in the low-and mid-latitude ocean and in the North Atlantic: reduced input of macro-nutrients into the euphotic zone related to enhanced stratification, reduced mixed layer depth, and slowed circulation causes a decrease in macronutrient concentrations and in PP and EP. The second regime is projected for parts of the Southern Ocean: an alleviation of light and/or temperature limitation leads to an increase in PP and EP as productivity is fueled by a sustained nutrient input. A region of disagreement among the models is the Arctic, where three models project an increase in PP while one model projects a decrease. Projected changes in seasonal and interannual variability are modest in most regions. Regional model skill metrics are proposed to generate multimodel mean fields that show an improved skill in representCorrespondence to: M. Steinacher (steinacher@climate.unibe.ch) ing observation-based estimates compared to a simple multimodel average. Model results are compared to recent productivity projections with three different algorithms, usually applied to infer net primary production from satellite observations.
The responses of carbon dioxide (CO2) and other climate variables to an emission pulse of CO2 into the atmosphere are often used to compute the Global Warming Potential (GWP) and Global Temperature change Potential (GTP), to characterize the response timescales of Earth System models, and to build reduced-form models. In this carbon cycle-climate model intercomparison project, which spans the full model hierarchy, we quantify responses to emission pulses of different magnitudes injected under different conditions. The CO2 response shows the known rapid decline in the first few decades followed by a millennium-scale tail. For a 100 Gt-C emission pulse added to a constant CO2 concentration of 389 ppm, 25 ± 9% is still found in the atmosphere after 1000 yr; the ocean has absorbed 59 ± 12% and the land the remainder (16 ± 14%). The response in global mean surface air temperature is an increase by 0.20 ± 0.12 °C within the first twenty years; thereafter and until year 1000, temperature decreases only slightly, whereas ocean heat content and sea level continue to rise. Our best estimate for the Absolute Global Warming Potential, given by the time-integrated response in CO2 at year 100 multiplied by its radiative efficiency, is 92.5 × 10−15 yr W m−2 per kg-CO2. This value very likely (5 to 95% confidence) lies within the range of (68 to 117) × 10−15 yr W m−2 per kg-CO2. Estimates for time-integrated response in CO2 published in the IPCC First, Second, and Fourth Assessment and our multi-model best estimate all agree within 15% during the first 100 yr. The integrated CO2 response, normalized by the pulse size, is lower for pre-industrial conditions, compared to present day, and lower for smaller pulses than larger pulses. In contrast, the response in temperature, sea level and ocean heat content is less sensitive to these choices. Although, choices in pulse size, background concentration, and model lead to uncertainties, the most important and subjective choice to determine AGWP of CO2 and GWP is the time horizon
Abstract. Accurate assessment of anthropogenic carbon dioxide (CO 2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO 2 emissions from fossil Earth Syst. Sci. Data, 7, 47-85, 2015 www.earth-syst-sci-data.net/7/47/2015/ C. Le Quéré et al.: Global carbon budget 2014 49 fuel combustion and cement production (E FF ) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E LUC ), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth (G ATM ) is computed from the annual changes in concentration. The mean ocean CO 2 sink (S OCEAN ) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S OCEAN is evaluated with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink (S LAND ) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO 2 , and land-coverchange (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ , reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013), E FF was 8.9 ± 0.4 GtC yr −1 , E LUC 0.9 ± 0.5 GtC yr −1 , G ATM 4.3 ± 0.1 GtC yr −1 , S OCEAN 2.6 ± 0.5 GtC yr −1 , and S LAND 2.9 ± 0.8 GtC yr −1 . For year 2013 alone, E FF grew to 9.9 ± 0.5 GtC yr −1 , 2.3 % above 2012, continuing the growth trend in these emissions, E LUC was 0.9 ± 0.5 GtC yr −1 , G ATM was 5.4 ± 0.2 GtC yr −1 , S OCEAN was 2.9 ± 0.5 GtC yr −1 , and S LAND was 2.5 ± 0.9 GtC yr −1 . G ATM was high in 2013, reflecting a steady increase in E FF and smaller and opposite changes between S OCEAN and S LAND compared to the past decade (2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013). The global atmospheric CO 2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that E FF will increase by 2.5 % (1.3-3.5 %) to 10.1 ± 0.6 GtC in 2...
Abstract. A long-standing task in climate research has been to distinguish between anthropogenic climate change and natural climate variability. A prerequisite for fulfilling this task is the understanding of the relative roles of external drivers and internal variability of climate and the carbon cycle. Here, we present the first ensemble simulations over the last 1200 years with a comprehensive Earth system model including a fully interactive carbon cycle. Applying up-to-date reconstructions of external forcing including the recent lowamplitude estimates of solar variations, the ensemble simulations reproduce temperature evolutions consistent with the range of reconstructions. The 20th-century warming trend stands out against all pre-industrial trends within the ensemble. Volcanic eruptions are necessary to explain variations in pre-industrial climate such as the Little Ice Age; yet only the strongest, repeated eruptions lead to cooling trends that differ significantly from the internal variability across all ensemble members. The simulated atmospheric CO 2 concentrations exhibit a stable carbon cycle over the pre-industrial era with multi-centennial variations somewhat smaller than in the observational records. Early land-cover changes have modulated atmospheric CO 2 concentrations only slightly. We provide a model-based quantification of the sensitivity (termed γ ) of the global carbon cycle to temperature for a variety of climate and forcing conditions. We diagnose a disCorrespondence to: J. H. Jungclaus (johann.jungclaus@zmaw.de) tinct dependence of γ on the forcing strength and time-scales involved, thus providing a possible explanation for the systematic difference in the observational estimates for different segments of the last millennium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.