A statistical sampling protocol is described to assess the fidelity of libraries encoded with molecular tags. The methodology, termed library QA, is based on the combined application of tag decode analysis and single bead LC/MS. The physical existence of library compounds eluted from beads is established by comparing the molecular weight predicted by tag decode with empirical measurement. The goal of sampling is to provide information on overall library fidelity and an indication of the performance of individual library synthons. The minimal sampling size n for library QA is l0 x the largest synthon set. Data are reported as proportion (p) +/- lower and upper boundary (lb-ub) computed at the 95% confidence level (alpha = 0.05). As a practical demonstration, library QA was performed on a 25,200-member library of statine amides (size = 40 x 63 x 10). Sampling was conducted three times at n approximately 630 beads per run for a total of 1902 beads. The overall proportions found for the three runs were consistent with one another: p = 84.4%, lb-ub = 81.5-87.2%; p = 83.1%, lb-ub = 80.2-85.95; and p = 84.5%, lb-ub = 81.8-87.3%, suggesting the true value of p is close to 84% compound confirmation. The performance pi of individual synthons was also computed. Corroboration of QA data with biological screening results obtained from assaying the library against cathepsin D and plasmepsin II is discussed.
Structure guided optimization of a series of nonpeptidic alkyl amine renin inhibitors allowed the rational incorporation of additional polar functionality. Replacement of the cyclohexylmethyl group occupying the S1 pocket with a (R)-(tetrahydropyran-3-yl)methyl group and utilization of a different attachment point led to the identification of clinical candidate 9. This compound demonstrated excellent selectivity over related and unrelated off-targets, >15% oral bioavailability in three species, oral efficacy in a double transgenic rat model of hypertension, and good exposure in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.