SummaryTo maintain genome stability, cells need to replicate their DNA before dividing. Upon completion of bulk DNA synthesis, the mitotic kinases CDK1 and PLK1 become active and drive entry into mitosis. Here, we have tested the hypothesis that DNA replication determines the timing of mitotic kinase activation. Using an optimized double-degron system, together with kinase inhibitors to enforce tight inhibition of key proteins, we find that human cells unable to initiate DNA replication prematurely enter mitosis. Preventing DNA replication licensing and/or firing causes prompt activation of CDK1 and PLK1 in S phase. In the presence of DNA replication, inhibition of CHK1 and p38 leads to premature activation of mitotic kinases, which induces severe replication stress. Our results demonstrate that, rather than merely a cell cycle output, DNA replication is an integral signaling component that restricts activation of mitotic kinases. DNA replication thus functions as a brake that determines cell cycle duration.
Homologous to the E6AP carboxyl terminus (HECT) and regulator of chromosome condensation 1 (RCC1)-like domain-containing proteins (HERCs) belong to the superfamily of ubiquitin ligases. HERC proteins are divided into two subfamilies, Large and Small HERCs. Despite their similarities in terms of both structure and domains, these subfamilies are evolutionarily very distant and result from a convergence phenomenon rather than from a common origin. Large HERC genes, HERC1 and HERC2 , are present in most metazoan taxa. They encode very large proteins (approximately 5,000 amino acid residues in a single polypeptide chain) that contain more than one RCC1-like domain as a structural characteristic. Accumulating evidences show that these unusually large proteins play key roles in a wide range of cellular functions which include neurodevelopment, DNA damage repair, and cell proliferation. To better understand the origin, evolution, and function of the Large HERC family, this minireview provides with an integrated overview of their structure and function and details their physiological implications. This study also highlights and discusses how dysregulation of these proteins is associated with severe human diseases such as neurological disorders and cancer.
The p53 tumor suppressor protein is a transcription factor that plays a prominent role in protecting cells from malignant transformation. Protein levels of p53 and its transcriptional activity are tightly regulated by the ubiquitin E3 ligase MDM2, the gene expression of which is transcriptionally regulated by p53 in a negative feedback loop. The p53 protein is transcriptionally active as a tetramer, and this oligomerization state is modulated by a complex formed by NEURL4 and the ubiquitin E3 ligase HERC2. Here, we report that MDM2 forms a complex with oligomeric p53, HERC2, and NEURL4. HERC2 knockdown results in a decline in MDM2 protein levels without affecting its protein stability, as it reduces its mRNA expression by inhibition of its promoter activation. DNA damage induced by bleomycin dissociates MDM2 from the p53/HERC2/NEURL4 complex and increases the phosphorylation and acetylation of oligomeric p53 bound to HERC2 and NEURL4. Moreover, the MDM2 promoter, which contains p53-response elements, competes with HERC2 for binding of oligomeric, phosphorylated and acetylated p53. We integrate these findings in a model showing the pivotal role of HERC2 in p53-MDM2 loop regulation. Altogether, these new insights in p53 pathway regulation are of great interest in cancer and may provide new therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.