This paper describes a new algorithm for recovering the 3D shape and motion of deformable and articulated objects purely from uncalibrated 2D image measurements using an iterative factorization approach. Most solutions to nonrigid and articulated structure from motion require metric constraints to be enforced on the motion matrix to solve for the transformation that upgrades the solution to metric space. While in the case of rigid structure the metric upgrade step is simple since the motion constraints are linear, deformability in the shape introduces non-linearities. In this paper we propose an alternating least-squares approach associated with a globally optimal projection step onto the manifold of metric constraints. An important advantage of this new algorithm is its ability to handle missing data which becomes crucial when dealing with real video sequences with self-occlusions. We show successful results of our algorithms on synthetic and real sequences of both deformable and articulated data.
Objective. Independent replication of the findings from genome-wide association studies (GWAS) remains the gold standard for results validation. Our aim was to test the association of Behçet's disease (BD) with the interleukin-10 gene (IL10) and the IL-23 receptor-IL-12 receptor 2 (IL23R-IL12RB2) locus, each of which has been previously identified as a risk factor for BD in 2 different GWAS.Methods. Six haplotype-tagging single-nucleotide polymorphisms (SNPs) in IL10 and 42 in IL23R-IL12RB2 were genotyped in 973 Iranian patients with BD and 637 non-BD controls. Population stratification was assessed using a panel of 86 ancestry-informative markers.Results. Subtle evidence of population stratification was found in our data set. In IL10, rs1518111 was nominally associated with BD before and after adjustment for population stratification (odds ratio [OR] for T allele 1.20, 95% confidence interval [95% CI] 1.02-1.40, unadjusted P [P unadj ] ؍ 2.53 ؋ 10 ؊2 ; adjusted P [P adj ] ؍ 1.43 ؋ 10 ؊2 ), and rs1554286 demonstrated a trend toward association (P unadj ؍ 6.14 ؋ 10 ؊2 ; P adj ؍ 3.21 ؋ 10 ؊2 ). Six SNPs in IL23R-IL12RB2 were found to be associated with BD after Bonferroni correction for multiple testing, the most significant of which were rs17375018 (OR for G allele 1.51, 95% CI 1.27-1.78, P unadj ؍ 1.93 ؋ 10 ؊6 ), rs7517847 (OR for T allele 1.48, 95% CI 1.26-1.74, P unadj ؍ 1.23 ؋ 10 ؊6 ), and rs924080 (OR for T allele 1.29, 95% CI 1.20-1.39, P ؍ 1.78 ؋ 10 ؊5 ). SNPs rs10489629, rs1343151, and rs1495965 were also significantly associated with BD in all tests performed. Results of meta-analyses of our data combined with data from other populations further confirmed the role of rs1518111, rs17375018, rs7517847, and rs924080 in the risk of BD, but no epistatic interactions between IL10 and IL23R-IL12RB2 were detected. Results of imputation analysis highlighted the importance of IL23R regulatory regions in the susceptibility to BD.Conclusion. These findings independently confirm, extend, and refine the association of BD with IL10 and IL23R-IL12RB2. These associations warrant further validation and investigation in patients with BD, as they may have implications for the development of novel therapies (e.g., immunosuppressive therapy targeted at IL-23p19).
BackgroundMicroRNAs (miRs or miRNAs) regulate several biological processes in the cell. However, evidence for miRNAs that control the differentiation program of specific neural cell types has been elusive. Recently, we have shown that apoptosis-associated factors, such as p53 and caspases participate in the differentiation process of mouse neural stem (NS) cells. To identify apoptosis-associated miRNAs that might play a role in neuronal development, we performed global miRNA expression profiling experiments in NS cells. Next, we characterized the expression of proapoptotic miRNAs, including miR-16, let-7a and miR-34a in distinct models of neural differentiation, including mouse embryonic stem cells, PC12 and NT2N cells. In addition, the expression of antiapoptotic miR-19a and 20a was also evaluated.ResultsThe expression of miR-16, let-7a and miR-34a was consistently upregulated in neural differentiation models. In contrast, expression of miR-19a and miR-20a was downregulated in mouse NS cell differentiation. Importantly, differential expression of specific apoptosis-related miRNAs was not associated with increased cell death. Overexpression of miR-34a increased the proportion of postmitotic neurons of mouse NS cells.ConclusionsIn conclusion, the identification of miR-16, let-7a and miR-34a, whose expression patterns are conserved in mouse, rat and human neural differentiation, implicates these specific miRNAs in mammalian neuronal development. The results provide new insights into the regulation of neuronal differentiation by apoptosis-associated miRNAs.
We have previously demonstrated the involvement of specific apoptosis-associated microRNAs (miRNAs), including miR-34a, in mouse neural stem cell (NSC) differentiation. In addition, a growing body of evidence points to a critical role for autophagy during neuronal differentiation, as a response-survival mechanism to limit oxidative stress and regulate synaptogenesis associated with this process. The aim of this study was to further investigate the precise role of miR-34a during NSC differentiation. Our results showed that miR-34a expression was markedly downregulated during neurogenesis. Neuronal differentiation and cell morphology, synapse function, and electrophysiological maturation were significantly impaired in miR-34a-overexpressing NSCs. In addition, synaptotagmin 1 (Syt1) and autophagy-related 9a (Atg9a) significantly increased during neurogenesis. Pharmacological inhibition of autophagy impaired both neuronal differentiation and cell morphology. Notably, we showed that Syt1 and Atg9a are miR-34a targets in neural differentiation context, markedly decreasing after miR-34a overexpression. Syt1 overexpression and rapamycin-induced autophagy partially rescued the impairment of neuronal differentiation by miR-34a. In conclusion, our results demonstrate a novel role for miR-34a regulation of NSC differentiation, where miR-34a downregulation and subsequent increase of Syt1 and Atg9a appear to be crucial for neurogenesis progression.
In conclusion, our results reveal a novel role for mitochondrial p53, which modulates mitochondrial damage and apoptosis-related events in the context of neural differentiation, thus enhancing neuronal fate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.