Abstract:The aliphatic polyesters are widely used in biomedical applications since they are susceptible to hydrolytic and/or enzymatic chain cleavage, leading to α-hydroxyacids, generally metabolized in the human body. This is particularly useful for many biomedical applications, particularly, for temporary mechanical supports in regenerative medical devices.Ideally, the degradation should be compatible with the tissue recovering.In this work, the mechanical properties evolution during degradation are discussed based on experimental data. The decrease of tensile strength of PLA-PCL fibers follows the same trend as the decrease of molecular weight, and so it can also be modeled using a first order equation. For each degradation stage, hyper elastic models such as neo-Hookean, MooneyRivlin and second reduced order, allowed a reasonable approximation of the material behavior. Based on this knowledge, constitutive models that describe the mechanical behavior during degradation are proposed and experimentally validated. The proposed theoretical models and methods may be adapted and used in other biodegradable materials, and can be considered fundamental tools in the design of regenerative medical devices where strain energy is an important requirement, such as ligaments, cartilage, stents or others.
Melamine can be incorporated in the synthesis of urea-formaldehyde (UF) resins to improve performance in particleboards (PB), mostly in terms of hydrolysis resistance and formaldehyde emission. In this work, melamine-fortified UF resins were synthesized using a strong acid process. The best step for melamine addition and the effect of the reaction pH on the resin characteristics and performance were evaluated. Results showed that melamine incorporation is more effective when added on the initial acidic stage. The condensation reaction pH has a significant effect on the synthesis process. A pH below 3.0 results on a very fast reaction that is difficult to control. On the other hand, with pH values above 5.0, the condensation reaction becomes excessively slow. PBs panels produced with resins synthesized with a condensation pH between 4.5 and 4.7 showed good overall performance, both in terms of internal bond strength and formaldehyde emissions.
This work discusses two processes for producing urea-formaldehyde (UF) resins. One is the alkalineacid process, which has three steps: usually an alkaline methylolation followed by an acid condensation and finally the addition of a final amount of urea. The other process, the strongly acid process, consists of four steps, in which the first step involves a strongly acid condensation followed by an alkaline methylolation, a second condensation under a moderately acid pH and finally, methylolation and neutralization under a slight alkaline pH. Two resins were produced using the two above described processes. The molecular weight distribution (MWD) of the resins was monitored off-line by GPC/SEC and the final resins were characterized by GPC/SEC and HPLC. These studies showed that the two resins differ greatly in chemical structure, composition, viscosity, and reactivity. The monitoring of MWD indicated that the first condensation under a strongly acid environment leads to the production of a polymer with a distinctly different chemical structure, therefore increasing the flexibility of polymer synthesis and opening the way to the improvement of end-use properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.