The influence of the hip joint formulation on the kinematic response of the model of human gait is investigated throughout this work. To accomplish this goal, the fundamental issues of the modeling process of a planar hip joint under the framework of multibody systems are revisited. In particular, the formulations for the ideal, dry, and lubricated revolute joints are described and utilized for the interaction of femur head inside acetabulum or the hip bone. In this process, the main kinematic and dynamic aspects of hip joints are analyzed. In a simple manner, the forces that are generated during human gait, for both dry and lubricated hip joint models, are computed in terms of the system's state variables and subsequently introduced into the dynamics equations of motion of the multibody system as external generalized forces. Moreover, a human multibody model is considered, which incorporates the different approaches for the hip articulation, namely, ideal joint, dry, and lubricated models. Finally, several computational simulations based on different approaches are performed, and the main results are presented and compared to identify differences among the methodologies and procedures adopted in this work. The input conditions to the models correspond to the experimental data capture from an adult male during normal gait. In general, the obtained results in terms of positions do not differ significantly when different hip joint models are considered. In sharp contrast, the velocity and acceleration plotted vary significantly. The effect of the hip joint modeling approach is clearly measurable and visible in terms of peaks and oscillations of the velocities and accelerations. In general, with the dry hip model, intrajoint force peaks can be observed, which can be associated with the multiple impacts between the femur head and the cup. In turn, when the lubricant is present, the system's response tends to be smoother due to the damping effects of the synovial fluid.
The influence of the hip joint formulation on the kinematic response of the model of human gait is investigated throughout this work. To accomplish this goal, the fundamental issues of the modeling process of a planar hip joint under the framework of multibody systems are revisited. In particular, the formulations for the ideal, dry, and lubricated revolute joints are described and utilized for the interaction of femur head inside acetabulum or the hip bone. In this process, the main kinematic and dynamic aspects of hip joints are analyzed. In a simple manner, the forces that are generated during human gait, for both dry and lubricated hip joint models, are computed in terms of the system’s state variables and subsequently introduced into the dynamics equations of motion of the multibody system as external generalized forces. Moreover, a human multibody model is considered, which incorporates the different approaches for the hip articulation, namely ideal joint, dry, and lubricated models. Finally, several computational simulations based on different approaches are performed and the main results presented and compared to identify differences among the methodologies and procedures adopted in this work. In addition some experimental data are presented and analyzed.
This study compares the flame speed of different textile materials employed in professional uniforms. Five different garments of aeronauts' uniforms were analyzed (totaling 200 specimens submitted to flammability tests). Plain weaves and twill weaves composed by 100% CO; 100% PES; 67% PES/33% CO; 50% PES/50% WO; and 55% PES/45%WO were analyzed in the warp and filling directions. The flame speed of each material was determined, and differences in the flame propagation of the fabrics were identified. The lowest flame speed occurred for the material 50% PES/50% WO plain weave and weft direction (0.742 ± 0.140 m/s). The highest flame speed was 3.698 ± 1.806 cm/s for the material 67%PES/33%CO, plain weave and filling direction. Future experiments for reducing the fabric flammability of the uniforms could be related to more closed fabric constructions; mixtures with synthetic fibers to add functionality; changing the direction of the fabric; and changing the weight and torsion of its constituent yarns.
The traditional bride trousseau (homewear) was composed of bedding, table and bath textiles and household utensils that were necessary for her married life. Social changes and technological advances provided a new perspective and proportion for homewear textile sector. This study aimed to analyze the evolution of household linen (bedding, table and bath), from 1976 to 2019, in Brazil, related to composition of materials. Literature and magazines of this area were analyzed, notably Casa Vogue Brasil ("Vogue Home Brazil") and Casa Claudia ("Claudia Home") magazines. It concluded that the main employed material is cotton, followed in lesser extent by blends (notably cotton and polyester). The classic patterns predominate, especially the flat fabrics, ornamented with embroidery and classic design of flower and geometric prints, white and soft colors (clear beige, clear gray, etc.). These products represent the majority of sales in the domestic, but they could be non-competitive at the foreign market considering the price in relation to commodities from Asia and also lacking the necessary differentiation to meet these target publics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.