In this work a new methodology is proposed to correct the thermal lag error in data from unpumped CTD sensors installed on Slocum gliders. The advantage of the new approach is twofold: first, it takes into account the variable speed of the glider; and second, it can be applied to CTD profiles from an autonomous platform either with or without a reference cast. The proposed methodology finds values for four correction parameters that minimize the area between two temperature-salinity curves given by two CTD profiles. A field experiment with a Slocum glider and a standard CTD was conducted to test the method. Thermal lag-induced salinity error of about 0.3 psu was found and successfully corrected.
Abstract. The accurate knowledge of the ocean's mean dynamic topography (MDT) is a crucial issue for a number of oceanographic applications and, in some areas of the Mediterranean Sea, important limitations have been found pointing to the need of an upgrade. We present a new MDT that was computed for the Mediterranean Sea. It profits from improvements made possible by the use of extended data sets and refined processing. The updated data set spans the 1993-2012 period and consists of drifter velocities, altimetry data, hydrological profiles and model data. The methodology is similar to the previous MDT by Rio et al. (2007). However, in Rio et al. (2007) no hydrological profiles had been taken into account. This required the development of dedicated processing. A number of sensitivity studies have been carried out to obtain the most accurate MDT as possible. The main results from these sensitivity studies are the following: moderate impact to the choice of correlation scales but almost negligible sensitivity to the choice of the first guess (model solution). A systematic external validation to independent data has been made to evaluate the performance of the new MDT. Compared to previous versions, SMDT-MED-2014 (Synthetic Mean Dynamic Topography of the MEDiterranean sea) features shorter-scale structures, which results in an altimeter velocity variance closer to the observed velocity variance and, at the same time, gives better Taylor skills.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.