This study evaluated the effect of exogenous vascular endothelial growth factor (VEGF) on tendon healing and regulation of other growth factors in a rat Achilles tendon model. Fifty Sprague-Dawley rats were used. In the experimental group, the left Achilles tendon was transected and repaired with the modified Kessler suture technique, and the right Achilles tendon was transected and repaired with resection of plantaris tendon. VEGF, 100 mul (50 mug/ml), was injected into each tendon at the repair site. The same surgical procedures were performed in the control group, with the same volume of saline injected into the repair sites. At intervals of 1, 2, and 4 weeks, the animals were killed and the tendons were harvested and evaluated for tensile strength (1, 2, and 4 weeks) and gene expression (postoperative day 4). At 1 week postoperatively, when plantaris tendon was preserved, the tensile strength of the repaired tendons with VEGF treatment (3.63 +/- 0.62 MPa) was significantly higher than the tensile strength of the repaired tendons with saline treatment (2.20 +/- 0.36 MPa). There was no difference in tensile strength between the two groups without the plantaris tendon support. At 2 weeks postoperatively, the tensile strength was 11.34 +/- 3.89 MPa in the group with VEGF treatment and plantaris tendon preservation, which was significantly higher than the tensile strength in the other groups. There was no significant difference in tensile strength among the groups at 4 weeks postoperatively. The gene expression showed that transforming growth factor-beta in the VEGF-treated tendon was up-regulated in the early stage of tendon healing, whereas expression of platelet-derived growth factor, basic fibroblast growth factor, and insulin-like growth factor-1 was not significantly different among the groups. In conclusion, administration of exogenous VEGF can significantly improve tensile strength early in the course of the rat Achilles tendon healing and was associated with increased expression of transforming growth factor-beta.
The use of autogenous venous graft with intraluminal injection of Schwann cells to enhance nerve regeneration of long segmental nerve defects was evaluated in a rabbit tibial nerve-repair model. Schwann cells were isolated from the excised rabbit tibial nerve by using the polylysine differential adhesion method. The cultured cells were identified by immunocytochemical labeling for S-100 protein. Tibial nerve defects in 4-cm segments were created in 24 animals, which were then divided into three groups. In Group 1, the tibial nerve defect was repaired with interposition vein graft alone; in Group 2, the nerve defect was repaired with a vein graft with intraluminal injection of Schwann-cell suspension; in Group 3, the nerve defect was repaired by autogenous nerve graft alone. At 2 months postoperatively, electrophysiologic evaluation showed that an evoked muscle action potential was recorded for the animals in Group 2, with vein grafting plus Schwann cells, and for those in Group 3, with autogenous nerve grafting, but not for those in Group 1, where vein grafting alone was used. The average motor nerve conduction velocity in the group with vein grafting and Schwann cells was 3.4 +/- 1.5 m/sec, which was slower than the nerve grafting group (7.8 +/- 1.8 m/sec). Histologic analysis confirmed there was formation of new nerve fascicles with myelination in the vein graft filled with Schwann cells. No nerve regrowth was found in the vein grafts without Schwann cells. These results suggested that isolated Schwann cells are able to survive in a vein graft, and that the vein graft with intraluminal seeded Schwann cells could be an alternative for repairing injured nerves with long gaps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.