We investigate the size-dependent optical absorption coefficients of CdSe nanocrystals at both the band-edge and high within the absorption profile. The absorption properties in both of these regions must be selfconsistent to ensure accuracy of the measured coefficients. By combining transmission electron microscopy and inductively coupled plasma-optical emission spectroscopy, we map out the optical absorption properties and establish reliable size-dependent band-edge calibration curves. The measured absorption properties are compared to a simple 0D confinement model, to classical theory based on light absorption by small particles in a dielectric medium and to state-of-the-art atomistic semiempirical pseudopotential modeling. The applicability of these newly established calibration curves is demonstrated by analyzing the nucleation and growth kinetics of CdSe nanocrystals in solution.
The successful transition of any nanocrystal-based product from the research phase to the commercial arena hinges on the ability to produce the required nanomaterial on large scales. The synthesis of colloidal nanocrystals using a heat-up (non-injection) method is a reliable means to achieve high quality nanomaterials on large scales with little or no batch-to-batch variation. In this class of synthesis precursors are heated within a reaction medium to induce a chemical reaction that yields monomer for nucleation and growth. Use of the heat-up technique circumvents the pitfalls of mixing time and poor heat management inherent to classical “hot-injection” methods. In heat-up syntheses monomer is produced in a more continuous fashion during the heating stage, making it more difficult to separate the nucleation and growth stages of the reaction, a factor that is conventionally considered detrimental toward achieving homogeneous colloidal dispersions. However, through the judicious selection of precursors, stabilizers, and reaction heating rates, these stages can be managed to yield colloids of comparable quality to those achieved via classical hot-injection methods. In this review we provide the reader with a fundamental basis upon which to understand the reaction requirements for achieving such favorable growth conditions. Given that the most important consideration in these reactions is precursor (and stabilizer) selection, we also provide an exposition of the precursor chemistry appropriate to achieving high quality products when using heat-up techniques. These topics form the foundation for critically evaluating the field of heat-up nanocrystal synthesis to date, including the synthesis of binary, ternary, and quaternary metal chalcogenide and pnictogenide nanocrystals, as well as metallic, metal oxide, and f-block conaining nanocrystals.
High quality CdSe nanocrystals have been prepared using elemental selenium as the chalcogenide precursor dispersed in 1-octadecene (ODE). The conditions used to prepare the Se precursor were found to be critical for successful nanocrystal synthesis. Systematic titration of the Se precursor solution with tri-n-octylphosphine (TOP) allowed the Se reactivity to be tuned and the final particle size to be controlled. Band-edge and surface related emission were observed for samples prepared in the presence and absence of added TOP. In the absence of a selenium passivant, the crystal structure of CdSe nanocrystals could be altered from zinc blende to wurtzite by the addition of bis(2,2,4-trimethylpentyl)phosphinic acid (TMPPA).
The competing effects of two ligands, oleic acid (OA) and bis-(2,2,4-trimethylpentyl) phosphinic acid (TMPPA), on the nucleation rate and growth of CdSe nanocrystals in octadecene are reported. It is found that TMPPA acts as a high boiling point "nonsolvent" or "nucleating agent". Addition of TMPPA leads to higher initial particle yields and smaller particle diameters. Conversely, oleic acid inhibits nucleation and results in a drastic increase in "early time ripening" (ETR), a phenomenon that causes a rapid reduction in the number of particles within the first minutes of reaction. By controlling the number of nuclei formed with TMPPA and tuning the rate of ETR with oleic acid, high yields of particles can be obtained with sizes between 3 and 7 nm. Furthermore, in the absence of OA, the preparation of very small nanocrystals with diameters approximately 2 nm is facilitated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.