Nowadays, cold plasma technology is highly involved in textile processing either to assist conventional wet-chemical processing and/or create innovative products. Plasma surface treatment is an ergonomically simple process, but the plasma process and its effect on the fibre surface are more complex due to the interplay of many concurrent processes at a time. The efficiency of plasma treatment mainly depends on the nature of textile material and the treatment operating parameters. The main objective of this review paper is to summarise and discuss the application of plasma treatment and its effect on the pre-treatment, dyeing, printing and finishing of natural and synthetic textile fibres. However, the application of plasma technology to different types of textile substrates has not been fully addressed.
In this study, vacuum oxygen plasma was applied to enhance the comfort properties of polyester/ cotton (P/C) blend fabric (65/35%) for tropical climatic conditions. In addition, air and argon plasma were used to examine the aging effect by TEGEWA drop test. Taguchi method was employed to design the experiment and analyze the largest influential variable as well as optimal parameter levels. More attention was given to the evaluation of wickability, water vapour permeability/resistance, air permeability and surface characterization. Results revealed that all plasma treated comfort properties enhanced except air permeability of experimental runs at 1O 2 and 7O 2 . Specifically, wickability of fabric increased at least by 43.25% and 37.63% in warp and weft directions, correspondingly, within 5 min of wicking time, whereas the thermal resistance reduced at least by 20.16%. The SEM images depicted the formation of cracks, grooves, nanostructures and high degree of roughness on plasma treated surfaces.
The conventional chemical-based antistatic agents possess ecological and technological drawbacks, such as altering the bulk characteristics, flammability, and toxicity, but not the cost effective process. Recently, using conductive metal fibers in the woven structure also affects the mechanical properties of the fabric. To overcome these challenges, plasma treatment needs to be quite an effective method. In this study, polyester/cotton (P/C), 65/35%, blend fabric was treated in a vacuum-plasma-chamber using air, argon and oxygen. The electro-physical property of the samples were evaluated by measuring the surface and volume resistivities (ρs, ρv) using textile electrode Tera Ohmmeter (TO-3). Textile Softness Analyzer (TSA) has also been used to investigate hand-feel properties of the fabric. After treatment, the results revealed that the surface resistivity was reduced by 35.5% in the case of O2, 27.3% for air and 18.4% for Ar, and also volume resistivity was decreased by 40.9%, 20.3% and 20% after O2, air and Ar-plasma, respectively, whereas hand-feel properties are slightly affected at a higher power level and treatment time. Out of the three gases, oxygen had less effect on hand-feel properties and highly reduced the fabric resistivity. In addition, the SEM images showed that the surface morphology of the fibers changed to being rough due to the plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.