In this paper, we present an efficient semantic segmentation framework for indoor scenes operating on 3D point clouds. We use the results of a Random Forest Classifier to initialize the unary potentials of a densely interconnected Conditional Random Field, for which we learn the parameters for the pairwise potentials from training data. These potentials capture and model common spatial relations between class labels, which can often be observed in indoor scenes. We evaluate our approach on the popular NYU Depth datasets, for which it achieves superior results compared to the current state of the art. Exploiting parallelization and applying an efficient CRF inference method based on mean field approximation, our framework is able to process full resolution Kinect point clouds in half a second on a regular laptop, more than twice as fast as comparable methods.
HighlightsSegmentation of unknown objects in cluttered scenes.Abstraction of raw RGB-D data into parametric surface patches.Learning of perceptual grouping between surfaces with SVMs.Global decision making for segmentation using Grahp-Cut.
This paper proposes an effective algorithm for recognizing objects and accurately estimating their 6DOF pose in scenes acquired by a RGB-D sensor. The proposed method is based on a combination of different recognition pipelines, each exploiting the data in a diverse manner and generating object hypotheses that are ultimately fused together in an Hypothesis Verification stage that globally enforces geometrical consistency between model hypotheses and the scene. Such a scheme boosts the overall recognition performance as it enhances the strength of the different recognition pipelines while diminishing the impact of their specific weaknesses. The proposed method outperforms the state-of-the-art on two challenging benchmark datasets for object recognition comprising 35 object models and, respectively, 176 and 353 scenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.