Background Robotic systems combined with Functional Electrical Stimulation (FES) showed promising results on upper-limb motor recovery after stroke, but adequately-sized randomized controlled trials (RCTs) are still missing. Objective To evaluate whether arm training supported by RETRAINER, a passive exoskeleton integrated with electromyograph-triggered functional electrical stimulation, is superior to advanced conventional therapy (ACT) of equal intensity in the recovery of arm functions, dexterity, strength, activities of daily living, and quality of life after stroke. Methods A single-blind RCT recruiting 72 patients was conducted. Patients, randomly allocated to 2 groups, were trained for 9 weeks, 3 times per week: the experimental group performed task-oriented exercises assisted by RETRAINER for 30 minutes plus ACT (60 minutes), whereas the control group performed only ACT (90 minutes). Patients were assessed before, soon after, and 1 month after the end of the intervention. Outcome measures were as follows: Action Research Arm Test (ARAT), Motricity Index, Motor Activity Log, Box and Blocks Test (BBT), Stroke Specific Quality of Life Scale (SSQoL), and Muscle Research Council. Results All outcomes but SSQoL significantly improved over time in both groups ( P < .001); a significant interaction effect in favor of the experimental group was found for ARAT and BBT. ARAT showed a between-group change of 11.5 points ( P = .010) at the end of the intervention, which increased to 13.6 points 1 month after. Patients considered RETRAINER moderately usable (System Usability Score of 61.5 ± 22.8). Conclusions Hybrid robotic systems, allowing to perform personalized, intensive, and task-oriented training, with an enriched sensory feedback, was superior to ACT in improving arm functions and dexterity after stroke.
The combined use of Functional Electrical Stimulation (FES) and robotic technologies is advocated to improve rehabilitation outcomes after stroke. This work describes an arm rehabilitation system developed within the European project RETRAINER. The system consists of a passive 4-degrees-of-freedom exoskeleton equipped with springs to provide gravity compensation and electromagnetic brakes to hold target positions. FES is integrated in the system to provide additional support to the most impaired muscles. FES is triggered based on the volitional EMG signal of the same stimulated muscle; in order to encourage the active involvement of the patient the volitional EMG is also monitored throughout the task execution and based on it a happy or sad emoji is visualized at the end of each task. The control interface control of the system provides a GUI and multiple software tools to organize rehabilitation exercises and monitor rehabilitation progress. The functionality and the usability of the system was evaluated on four stroke patients. All patients were able to use the system and judged positively its wearability and the provided support. They were able to trigger the stimulation based on their residual muscle activity and provided different levels of active involvement in the exercise, in agreement with their level of impairment. A randomized controlled trial aimed at evaluating the effectiveness of the RETRAINER system to improve arm function after stroke is currently ongoing.
To develop and evaluate a hybrid robotic system for arm recovery after stroke, combining EMG-triggered Functional Electrical Stimulation (FES) with a passive exoskeleton for upper limb suspension. Methods: The system was used in a structured exercise program resembling activities of daily life. Exercises execution was continuously controlled using angle sensor data and Radio-Frequency IDentification (RFID) technology. The training program consisted of 27 sessions lasting 30 minutes each. Seven post-acute stroke patients were recruited from two clinical sites. The efficacy of the system was evaluated in terms of Action Research Arm Test, Motricity Index, Motor Activity Log, and Box & Blocks tests. Furthermore, kinematicsbased and EMG-based outcome measures were derived directly from data collected during training sessions. Results: All patients showed an improvement of motor functions at the end of the training program. After training, the exercises were in most cases executed faster, smoother and with an increased range of motion. Subjects were able to trigger FES, but in some cases, they did not maintain the voluntary effort during task execution. All subjects but one considered the system usable. Conclusion: The preliminary results showed that the system can be used in a clinical environment with positive effects on arm functional recovery. However, only the final results of the currently ongoing clinical trial will unveil the system full potential. Significance: The presented hybrid robotic system is highly customizable, allows to monitor the daily performance, requires low supervision of the therapist and might have the potential to enhance arm recovery after stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.