Protistan cells employ a wide variety of strategies to reinforce and give pattern to their outermost cortical layers. Whereas some use common cytoskeletal elements such as microtubules, others are based on novel cytoskeletal proteins that are as-yet-unknown in higher eukaryotes. The hypotrich ciliate Euplotes possesses a continuous monolayer of scales or plates, located within flattened membranous sacs (`alveoli') just below the plasma membrane, and this provides rigidity and form to the cell. Using immunological techniques, the major proteins comprising these `alveolar plates' have been identified and termed α-, β-, andγ-plateins. The present report describes work leading to the molecular characterization of three plateins, α1 and α2 (predicted Mrs of 61 and 56 kDa) and a β/γ form(Mr=73 kDa). All three proteins have features that are hallmarks of articulins, a class of cytoskeletal proteins that has been identified in the cortex of a wide variety of protistan cells, including certain flagellates, ciliates, dinoflagellates and Plasmodium. Chief among these common features are a prominent primary domain of tandem 12-amino acid repeats, rich in valine and proline, and a secondary domain of fewer,shorter repeating units. However, variations in amino acid use within both primary and secondary repetitive domains, and a much more acidic character(predicted pIs of 4.7-4.9), indicate that the plateins represent the first proteins in a new subclass or family of articulins. This conclusion is supported by another novel feature of the plateins, the presence of a canonical hydrophobic signal peptide at the N-terminus of each derived platein sequence. This correlates well with the final cellular location of the plateins, which are assembled into plates within the membrane-limited alveolar sacs. To our knowledge, this is the first report in any eukaryote of cytoskeletal proteins with such start—transfer sequences. Confocal immunofluorescence microscopy, using antibodies to the plateins as probes,reveals that new alveolar plates (enlarging in cortical zones undergoing morphogenesis) label more faintly than mature parental plates. During plate assembly (or polymerization), the plateins thus appear to exist in a more soluble form.
The development of the macronucleus following conjugation in the hypotrichous ciliates Euplotes and Stylonychia has been examined with the electron microscope. Banded polytene chromosomes can be seen in thin sections of the macronuclear anlagen during the early periods of exconjugant development. As the chromosomes reach their maximum state of polyteny, sheets of fibrous material appear between the chromosomes and transect the chromosomes in the interband regions. Individual bands of the polytene chromosomes thus appear to be isolated in separate compartments. Subsequently, during the stage when the bulk of the polytenic DNA is degraded (1), these compartments swell, resulting in a nucleus packed with thousands of separate spherical chambers. Individual chromosomes are no longer discernible. The anlagen retain this compartmentalized condition for several hours, at the end of which time aggregates of dense material form within many of the compartments. The partitioning layers disperse shortly before replication bands appear within the elongating anlagen, initiating the second period of DNA synthesis characteristic of macronuclear development in these hypotrichs. The evidence presented here suggests that the "chromatin granules" seen in the mature vegetative macronucleus represent the material of single bands of the polytene chromosomes seen during the earlier stages of macronuclear development. The possibility is also discussed that the degradation of DNA in the polytene chromosomes may be genetically selective, which would result in a somatic macronucleus with a different genetic constitution than that of the micronucleus from which it was derived.
Morphogenesis of the ciliate cortex has been viewed as an attractive model system for studying the mechanisms behind the ordered assembly of subcellular structure. Based on the assumption that identifying protein components of the cortex would facilitate the study of cortical assembly, I have produced a number of monoclonal antibodies directed against components of the cortex of Euplotes aediculatus. Several of these antibodies react with the proteins comprising the alveolar plates. These thin polygonal scales, each enclosed within a flattened membranous sac (alveolus) just beneath the cell membrane, tightly abut in a confluent monolayer that appears to lend form and rigidity to the Euplotes cell cortex. Reactivity and specificity of these monoclonal antibodies for the alveolar plates was shown by immunofluorescence staining of whole‐cell preparations and of cryosections, and by immuno‐gold staining of thin sections by electron microscopy. On immunoblots of SDS‐PAGE separated whole‐cell extracts, the plate proteins are revealed as two to three closely spaced bands centered at an Mr of 97 kDa, and a larger relative at 125 kDa. Comparative peptide mapping reveals that the members of the 97‐kDa protein cluster are closely related. However, the 125‐kDa polypeptide varies significantly from the 97‐kDa members, and hence is not likely a synthetic precursor. Because bands of these Mr values are prominent in Coomassie blue‐stained gels of whole‐cell extracts, and are greatly enriched in purified cortical preparations, they likely represent the major proteins comprising the alveolar plates of E. aediculatus. I have proposed the name platein for this family of proteins.
Cilia on the ventral surface of the hypotrich ciliate Euplotes are clustered into polykinetids or compound ciliary organelles, such as cirri or oral membranelles, used in locomotion and prey capture. A single polykinetid may contain more than 150 individual cilia; these emerge from basal bodies held in a closely spaced array within a scaffold or framework structure that has been referred to as a basal-body "cage". Cage structures were isolated free of cilia and basal bodies; the predominant component of such cages was found on polyacrylamide gels to be a 45-kDa polypeptide. Antisera were raised against this protein band and used for immunolocalizations at the light and electron microscope levels. Indirect immunofluorescence revealed the 45-kDa polypeptide to be localized exclusively to the bases of the ventral polykinetids. Immunogold staining of thin sections of intact cells further localized this reactivity to filaments of a double-layered dense lattice that appears to link adjoining basal bodies into ordered arrays within each polykinetid. Scanning electron microscopy of isolated cages reveals the lower or "basal" cage layer to be a fine lacey meshwork supporting the basal bodies at their proximal ends; adjoining basal bodies are held at their characteristic spacing by filaments of an upper or "medial" cage layer. The isolated cage thus resembles a miniature test-tube rack, able to accommodate varying arrangements of basal-body rows, depending on the particular type of polykinetid. Because of its clear and specific localization to the basal-body cages in Euplotes, we have termed this novel 45-kDa protein "cagein".
In euplotid ciliates, the cortex is reinforced by alveolar plates--proteinaceous scales located within the membranous alveolar sacs, forming a monolayer just below the plasma membrane. This system appears to play a cytoskeletal role analogous to that provided by the fibrous epiplasm found beneath the cortical alveoli in other ciliates. In Euplotes aediculatus, the major alveolar plate proteins (termed alpha-, beta-, and gamma-plateins) have been identified. Using anti-platein antibodies, an expression library of Euplotes genes was screened, and a platein gene identified, cloned, and completely sequenced. Comparison of its derived amino acid sequence with microsequences obtained directly from purified plateins identified this gene as encoding one of the closely related beta- or gamma-plateins. The derived protein, of 644 amino acids (74.9 kDa), is very acidic (pI = 4.88). Microsequences from authentic alpha-platein were then used to design oligonucleotide primers, which yielded, via a PCR-based approach, the sequences of two alpha-platein genes from E. aediculatus. Even more acidic proteins, the derived alpha1- and alpha2-plateins contain 536 and 501 residues, respectively. Analyses of their amino acid sequences revealed the plateins to be members of the articulin superfamily of cytoskeletal proteins, first described in Euglena and now identified in the ciliate Pseudomicrothorax and in Plasmodium. The hallmark articulin repetitive motifs (based on degenerate valine- and proline-rich 12-mers) are present in all three plateins. In beta/gamma-platein this primary motif domain (27 repeats) is central in the molecule, whereas the primary repeats in the alpha-plateins lie near their C-termini. A cluster of proline-rich pentameric secondary repeats is found in the C-terminus of beta/gamma-platein, but near the N-terminus of alpha-plateins. All three plateins contain canonical N-terminal signal sequences, unique among known cytoskeletal proteins. The presence of start-transfer sequences correlates well with the final intra-alveolar location of these proteins. This feature, and significant differences from known articulins in amino acid usage and arrangement within the repeat domains, lead us to propose that the plateins comprise a new family of articulin-related proteins. Efforts to follow microscopically the assembly of plateins into new alveolar plates during pre-fission morphogenesis are underway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.