Genetic and protein engineering are components of a new polymer chemistry that provide the tools for producing macromolecular polyamide copolymers of diversity and precision far beyond the current capabilities of synthetic polymer chemistry. The genetic machinery allows molecular control of chemical and physical chain properties. Nature utilizes this control to formulate protein polymers into materials with extraordinary mechanical properties, such as the strength and toughness of silk and the elasticity and resilience of mammalian elastin. The properties of these materials have been attributed to the presence of short repeating oligopeptide sequences contained in the proteins, fibroin, and elastin. We have produced homoblock protein polymers consisting exclusively of silk-like crystalline blocks and elastin-like flexible blocks. We have demonstrated that each homoblock polymer as produced by microbial fermentation exhibits measurable properties of crystallinity and elasticity. Additionally, we have produced alternating block copolymers of various amounts of silk-like and elastin-like blocks, ranging from a ratio of 1:4 to 2:1, respectively. The crystallinity of each copolymer varies with the amount of crystalline block interruptions. The production of fiber materials with custom-engineered mechanical properties is a potential outcome of this technology.
The unique advantage of genetic engineering techniques for the design and development of polymers for controlled gene delivery lies in exquisite control over polymer structure. In this article we report the biosynthesis and characterization of a series of new silk-elastinlike protein polymers (SELPs), namely, SELP415K, with larger elastin blocks per monomer unit than SELP47K previously studied for matrix-mediated gene delivery. A new cloning strategy was used, where a block of eight elastin units (8E) was integrated into the existing DNA sequence of SELP47K monomer genes using appropriate restriction endonuclease recognition sites. Following random multimerization, multimer gene segments of desired size were selected, expressed, and purified on Ni-agarose columns. The molecular weight and sequence composition of the purified SELPs were determined by MALDI-TOF and amino acid analysis, respectively. The influence of structural changes on the rheological properties of the polymers was investigated. In addition, hydrogel disks were prepared from 47K and 415K-8mer polymer solutions, and the effects of cure time and environmental conditions on the hydrogel equilibrium swelling ratio as a function of polymer composition were studied. DNA sequencing and agarose gel electrophoresis confirmed the successful cloning of the monomer gene segment of SELP415K consisting of 312 bp. Random concatemerization of SELP415K monomer gene segments resulted in a library of SELP415K multimer sequences of 6, 8, and 10 repeats respectively, each yielding a polymer with exact molecular weight and sequence. Rheometric measurements showed that both complex shear modulus (G*) and gelation point were influenced by polymer composition. Equilibrium swelling studies on hydrogel disks prepared from 47K and 415K-8mer polymer solutions showed that changes in polymer composition resulted in different gelation patterns and increased sensitivity toward changes in temperature and ionic strength but not pH. Together these results demonstrate the potential of recombinant techniques in engineering polymers with defined structures which allows the study of the structural parameters affecting matrix-mediated delivery of genes and bioactive agents.
The purpose of this work was to synthesize and characterize a pH- and temperature-sensitive block copolymer containing repeating sequences from silk (Gly-Ala-Gly-Ala-Gly-Ser) and elastin (Gly-Val-Gly-Val-Pro) protein. The monomer contained one repeat of silk and eight repeat units of elastin, with the first valine in one of the elastin repeats being replaced by glutamic acid. The copolymer was synthesized using genetic engineering techniques. The sensitivity of the copolymer to pH and temperature was examined at various polymer concentrations and ionic strengths. Turbidity measurements were carried out over a temperature range of 20 to 100 degrees C at various pH, concentration, and ionic strength values. The introduction of an ionizable residue (glutamic acid) rendered the copolymer sensitive to changes in pH. The transition termperature (T(t)), the temperature at which the polymer became insoluble upon increase in temperature, was modulated by changing the pH. In general, the T(t) value, was found: (1) to increase with an increase in pH, (2) to decrease with increasing ionic strength, and (3) to decrease with increasing concentration. Results of these studies suggest that by strategic placement of charged amino acids in genetically engineered silk-elastinlike protein block copolymers it is possible to precisely control sensitivity to stimuli such as pH and temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.