Context. There is an increasing reliance on the use of camera-trap technologies for surveys of medium to large terrestrial mammals. Camera trapping may, however, also have significant applications for broad-scale surveys of small mammals.
Aims. The present study aims to compare results from camera-trapping surveys to those of the more traditional live-trapping techniques. Specifically, it aims to test the effectiveness of the techniques for detecting species, and the cost effectiveness of both approaches.
Methods. Surveys were conducted across 36 sites in the Grampians National Park, Victoria, Australia, between April and July 2009. At each site, independent surveys were conducted for small mammals by using a combination of Elliot and cage trapping, then camera trapping. Results for the two different approaches were compared for both their ability to generate small-mammal presence data and their cost effectiveness.
Key results. Camera-trapping surveys of 36 sites in the Grampians National Park compared favourably with those of live-trapping surveys. Similar species were detected across the sites, and camera trapping was a considerably more cost effective than live trapping.
Conclusions. Camera-trapping surveys of small terrestrial mammals may provide a new and cost-effective technique for surveying terrestrial small mammals. This is particularly the case when presence data are the main requirement of the survey, with no requirement to capture and tag animals.
Implications. Given the cost-effective nature of camera trapping, there is potential to use this approach to increase the level of replication and spatial coverage of small-mammal surveys. Improving the replication and spatial coverage of studies has the potential to significantly increase the scope of research questions that can be asked, thus providing the potential to improve wildlife management.
Aim We examined the century‐long post‐fire responses of reptiles to (1) determine the time‐scales over which fauna – fire relationships occur, (2) assess the capacity of a conceptual model to predict faunal response to fire, and (3) investigate the degree to which models of fauna – fire relationships can predict species occurrence and are transferable across space.
Location A 104,000 km2 area in the semi‐arid Murray Mallee region of south‐eastern Australia.
Methods We surveyed reptiles at 280 sites across a century‐long post‐fire chronosequence. We developed generalized additive mixed models (GAMMs) of the relationship between time since fire and the occurrence of 17 species in two subregions, and compared modelled responses with predictions derived from the conceptual model. The predictive capacity of GAMMs was then assessed (1) within the subregion the model was developed and (2) when transferred into a novel subregion.
Results Eleven species displayed a significant relationship with time‐since‐fire, with changes in species probability of occurrence continuing up to 100 years post‐fire. Predictions of the timing of species post‐fire peak in occurrence were accurate for 9 of 13 species models for which a significant fire response was detected, but little success was achieved in predicting the shape of a species' response. GAMMs predicted species occurrence more accurately when applied within the subregion in which they were developed than when transferred into a novel subregion, primarily due to some species responding to fire more strongly in one part of their geographic range.
Main conclusions Fire influences the occurrence of reptiles in semi‐arid ecosystems over century‐long time frames. Habitat‐use conceptual models have value in predicting the peak occurrence of species following fire, particularly for species with distributions strongly shaped by fire. Species relationships with fire can differ across their geographic range, probably associated with variation in climatic influences on post‐fire succession and the consequent provision of habitat resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.