A novel mixed substrate solid-state fermentation (SSF) process has been developed for Aspergillus niger MTCC 2594 using wheat bran (WB) and gingelly oil cake (GOC) and the results showed that addition of GOC to WB (WB : GOC, 3 : 1, w/w) increased the lipase activity by 36.0% and the activity was 384.3+/-4.5 U/g dry substrate at 30 degrees C and 72 h. Scale up of lipase production to 100 g and 1 kg tray-level batch fermentation resulted in 95.0% and 84.0% of enzyme activities respectively at 72 h. A three-stage multiple contact counter-current extraction yielded 97% enzyme recovery with a contact time of 60 min. However, extraction by simple percolation and plug-flow methods resulted in decreased enzyme recoveries. The mixed substrate SSF process has resulted in a significant increase in specific activity (58.9%) when compared to a submerged fermentation (SmF) system. Furthermore, an efficient process of extraction has been standardized with this process. Use of GOC along with WB as potential raw materials for enzyme production could be of great commercial significance. This is the first report on the production and extraction of lipase from Aspergillus niger using mixed solid substrates, WB and GOC, which are potential raw materials for the production of enzymes and other value-added products.
The structural elucidations of microbial lipases have been of prime interest since the 1980s. Knowledge of structural features plays an important role in designing and engineering lipases for specific purposes. Significant structural data have been presented for few microbial lipases, while, there is still a structure-deficit, that is, most lipase structures are yet to be resolved. A search for ‘lipase structure’ in the RCSB Protein Data Bank (http://www.rcsb.org/pdb/) returns only 93 hits (as of September 2007) and, the NCBI database (http://www.ncbi.nlm.nih.gov) reports 89 lipase structures as compared to 14719 core nucleotide records. It is therefore worthwhile to consider investigations on the structural analysis of microbial lipases. This review is intended to provide a collection of resources on the instrumental, chemical and bioinformatics approaches for structure analyses. X-ray crystallography is a versatile tool for the structural biochemists and is been exploited till today. The chemical methods of recent interests include molecular modeling and combinatorial designs. Bioinformatics has surged striking interests in protein structural analysis with the advent of innumerable tools. Furthermore, a literature platform of the structural elucidations so far investigated has been presented with detailed descriptions as applicable to microbial lipases. A case study of Candida rugosa lipase (CRL) has also been discussed which highlights important structural features also common to most lipases. A general profile of lipase has been vividly described with an overview of lipase research reviewed in the past.
Chromium toxicity is one of the major causes of environmental pollution due to its heavy discharge in industrial wastewaters. Chromate reduction is a viable method to detoxify hexavalent chromium to nontoxic trivalent species mediated by enzymes and metabolites. A new Bacillus methylotrophicus strain was isolated from tannery sludge and was an efficient candidate for chromate reduction. An initial chromate reductase activity of 212.84 U/mg protein was obtained at 48 h in a low-cost defined medium formulation with 0.25 mM chromate. The extracellular enzyme was inducible at 12h substrate addition with 312.99 U/mg at 48 h. Reduced glutathione was required for enhanced specific activity of 356.48 U/mg. Enzyme activity was optimum at pH 7.0 and at 30 °C, and was stable in the presence of EDTA, DTT and metal ions. The enzyme exhibited a Vmax of 59.89 μM/min/mg protein and a Km of 86.5 μM, suggesting feasibility of the reaction with K₂Cr₂O₇ as substrate. Application of the crude reductase in tannery effluent resulted in 91.3% chromate reduction at 48 h. An enzyme-mediated chromate reduction process has therefore been developed for bioremediation of toxic chromium sp. in industrial effluents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.