In this paper, we present a new way to assess the concentration of estradiol (E2) and Insulin Growth Factor-1 (IGF) based on the results from ultrasound scans combined with mathematical models. The IGF1 model is based on the progesterone (P4) concentration, which can be estimated with models calculating P4 level based on the size/volume of corpus luteum (CL) measured during ultrasound scans. At this moment little is known about the underlying reasons for double ovulation and silent heat occurrences. Both of these are linked to the level of IGF1: double ovulations are linked to higher IGF1 levels and and silent heat is linked to lower E2 to P4 ratio. These models can help to improve understanding of the related concentrations of E2 and IGF1. Currently, it is known that diet and genetic factors have an impact on ovulation rates and silent heat. In this study, we also examine the decline of the production of E2 in vivo by atretic follicles throughout the process of atresia. This is the first recorded quantitative description of this decline.
Little work has been done on the localization of microcracks in bone using acoustic emission. Microcrack localization is useful to study the fracture process in bone and to prevent fractures in patients. Locating microcracks that occur before fracture allows one to predict where fracture will occur if continued stress is applied to the bone. Two source location algorithms were developed to locate microcracks on rectangular bovine bone samples. The first algorithm uses a constant velocity approach which has some difficulty dealing with the anisotropic nature of bone. However, the second algorithm uses an iterative technique to estimate the correct velocity for the acoustic emission source location being located. In tests with simulated microcracks, the constant velocity algorithm achieves a median error of 1.78 mm (IQR 1.51 mm) and the variable velocity algorithm improves this to a median error of 0.70 mm (IQR 0.79 mm). An experiment in which the bone samples were loaded in a three point bend test until they fractured showed a good correlation between the computed location of detected microcracks and where the final fracture occurred. Microcracks can be located on bovine bone samples using acoustic emission with good accuracy and precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.