Insertable planar gradient coils offer the potential for significant performance increases in magnetic resonance imaging through higher gradient strength and shorter rise times. Using variational methods to minimize inductance, and thereby to optimize switching speeds, we have analyzed and constructed a biplanar y-gradient coil for insertion into a solenoidal magnet system where z is the magnet axis. We have also analyzed biplanar x-gradient and z-gradient coil designs using the same methods. These biplanar coils offer an advantage over a cylindrical coil of comparable diameter in that they achieve high gradient strengths with relatively short rise times while maintaining patient access. Although the requirement that the currents for the x gradient lie in the same plane as for the y and z gradients increases the stored energy by a factor of 3 with respect to the other two gradients, this stored energy is still smaller by a factor of 2 than that of a comparably constrained x-gradient cylindrical coil. The biplanar coil design offers improved linearity over its single planar coil alternative. The particular designs we have investigated are generally limited to small-volume imaging.
The approach to include bones in MRI-based attenuation maps described in this work improves quantification of whole-body PET images in and around bony anatomy. The reduction in error is often large (tens of percents), and could alter image interpretation and subsequent patient care. Changes in other parts of the PET image are minimal and likely not of clinical significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.