[1] We examine relations for hydraulic geometry of alluvial, single-thread gravel bed rivers with definable bankfull geometries. Four baseline data sets determine relations for bankfull geometry, i.e., bankfull depth, bankfull width, and down-channel slope as functions of bankfull discharge and bed surface median sediment size. These relations show a considerable degree of universality. This universality applies not only within the four sets used to determine the forms but also to three independent data sets as well. We study the physical basis for this universality in terms of four relations, the coefficients and exponents of which can be back calculated from the data: (1) a Manning-Stricklertype relation for channel resistance, (2) a channel-forming relation expressed in terms of the ratio of bankfull Shields number to critical Shields number, (3) a relation for critical Shields number as a function of dimensionless discharge, and (4) a ''gravel yield'' relation specifying the (estimated) gravel transport rate at bankfull flow as a function of bankfull discharge and gravel size. We use these underlying relations to explore why the dimensionless bankfull relations are only quasi-universal and to quantify the degree to which deviation from universality can be expected. The analysis presented here represents an alternative to extremal formulations to predict hydraulic geometry.Citation: Parker, G., P. R. Wilcock, C. Paola, W. E. Dietrich, and J. Pitlick (2007), Physical basis for quasi-universal relations describing bankfull hydraulic geometry of single-thread gravel bed rivers,
Analyses of streamflow, snow mass temperature, and precipitation in snowmelt-dominated river basins in the western United States indicate an advance in the timing of peak spring season flows over the past 50 years. Warm temperature spells in spring have occurred much earlier in recent years, which explains in part the trend in the timing of the spring peak flow. In addition, a decrease in snow water equivalent and a general increase in winter precipitation are evident for many stations in the western United States. It appears that in recent decades more of the precipitation is coming as rain rather than snow. The trends are strongest at lower elevations and in the Pacific Northwest region, where winter temperatures are closer to the melting point; it appears that in this region in particular, modest shifts in temperature are capable of forcing large shifts in basin hydrologic response. It is speculated that these trends could be potentially a manifestation of the general global warming trend in recent decades and also due to enhanced ENSO activity. The observed trends in hydroclimatology over the western United States can have significant impacts on water resources planning and management.
[1] The present study examines variations in the reference shear stress for bed load transport (t r ) using coupled measurements of flow and bed load transport in 45 gravel-bed streams and rivers. The study streams encompass a wide range in bank-full discharge (1-2600 m 3 /s), average channel gradient (0.0003-0.05), and median surface grain size (0.027-0.21 m). A bed load transport relation was formed for each site by plotting individual values of the dimensionless transport rate W* versus the reach-average dimensionless shear stress t*. The reference dimensionless shear stress t* r was then estimated by selecting the value of t* corresponding to a reference transport rate of W* = 0.002. The results indicate that the discharge corresponding to t* r averages 67% of the bank-full discharge, with the variation independent of reach-scale morphologic and sediment properties. However, values of t* r increase systematically with average channel gradient, ranging from 0.025-0.035 at sites with slopes of 0.001-0.006 to values greater than 0.10 at sites with slopes greater than 0.02. A corresponding relation for the bank-full dimensionless shear stress t* bf , formulated with data from 159 sites in North America and England, mirrors the relation between t* r and channel gradient, suggesting that the bank-full channel geometry of gravel-and cobble-bedded streams is adjusted to a relatively constant excess shear stress, t* bf À t* r , across a wide range of slopes.
Abstract. Local variations in boundary shear stress acting on bed-surface particles control patterns of bed load transport and channel evolution during varying stream discharges. At the reach scale a channel adjusts to imposed water and sediment supply through mutual interactions among channel form, local grain size, and local flow dynamics that govern bed mobility. In order to explore these adjustments, we used a numerical flow model to examine relations between model-predicted local boundary shear stress (ri) and measured surface particle size (Ds0) at bank-full discharge in six gravel-bed, alternate-bar channels with widely differing annual sediment yields. Values of ri and Ds0 were poorly correlated such that small areas conveyed large proportions of the total bed load, especially in sediment-poor channels with low mobility. Sediment-rich channels had greater areas of full mobility; sediment-poor channels had greater areas of partial mobility; and both types had significant areas that were essentially immobile. Two reachmean mobility parameters (Shields stress and Q*) correlated reasonably well with sediment supply. Values which can be practicably obtained from carefully measured mean hydraulic variables and particle size would provide first-order assessments of bed mobility that would broadly distinguish the channels in this study according to their sediment yield and bed mobility. IntroductionChannel evolution is a response to runoff and sediment supply involving mutual interactions among channel form, bed material size, and hydraulic forces. In the short term these interactions are driven by spatial variations in boundary shear stress acting on bed material of varying mobility. In most gravel-bed channels, mean boundary shear stress only slightly exceeds the threshold for particle entrainment at channelforming (bank-full) flows [Parker, 1979;Andrews, 1983]. Such channels are commonly referred to as "threshold channels."A question that we address is, How well are boundary shear stress and bed-surface particle size adjusted within a reach of a threshold channel? Four degrees of adjustment could govern channel evolution: (1) Variations in bed-surface particle size are balanced by variations in boundary shear stress so that threshold conditions are met uniformly over the channel. Con- Flume experiments have indicated that the heterogeneity of particle sizes in gravel-bed channels provides a capacity for adjusting to changes in sediment load through changes in the mobility of the bed surface. Dietrich et al. [1989] fed mixed-size sediment at a high rate into a narrow flume containing bed material with the same size mixture as the feed and then reduced the feed rate in two steps after achieving equilibrium in sediment transport during each step as boundary shear stress was held approximately constant. At the initial, highest feed rate a coarse surface layer was not evident. After each subsequent reduction in feed rate the surface coarsened over most of the bed. In total, a 90% reduction in feed rate resulted i...
Abstract. Elastohydrodynamic theory and measurements of particle impacts on an inclined glass plane in water are used to investigate the mechanics of interparticle collisions in sediment-transporting flows. A collision Stokes number is proposed as a measure of the momentum of an interparticle collision versus the viscous pressure force in the interstitial gap between colliding particles. The viscous pressure force opposes motion of the particles on approach and rebound. A Stokes number of between 39 and 105 is estimated as the critical range below which particle impacts are completely viscously damped and above which impacts are partially elastic. The critical Stokes number is shown to roughly coincide with the Bagnold number transition between macroviscous and grain inertial debris flows and the transition between damped and partially elastic bed load transport saltation impacts. The nonspherical nature of natural particles significantly alters the motion of the center of mass after a partially elastic collision. The normal to the point of contact between the particles does not necessarily go through the center of mass. Thus normal rebound of the center of mass may not occur. A model of particle motion after rebound for particles of arbitrary shape, conserving both linear and angular momentum, is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.