Cr(VI) is a well-known human carcinogen with many water-soluble moieties. Its presence in both natural and man-made substances poses a risk to public health, especially when contamination of groundwater is possible. This has led the European Union and other jurisdictions to include Cr(VI) in restriction of hazardous substances regulations. However, for several important industrial and commercial purposes, analytical capability to characterize Cr(VI) is known to be insufficient for regulatory purposes. For example, advanced X-ray spectroscopies, particularly synchrotron-based X-ray absorption fine structure (XAFS) studies, have shown that species interconversion and under-extraction can be difficult to prevent in many existing liquid extraction protocols when applied to plastics, mining ores and tailings, and paint sludges. Here, we report that wavelength dispersive X-ray fluorescence spectroscopy taken at energy resolutions close to the theoretical limit imposed by the core-hole lifetime, generally called X-ray emission spectroscopy (XES) in the synchrotron community, can be used in the laboratory setting for noninvasive, analytical characterization of the Cr(VI)/Cr ratio in plastics. The selected samples have been part of ongoing efforts by standards development organizations to create improved Cr(VI) testing protocols, and the present work provides a direct proof-of-principle for the use of such extremely high-resolution laboratory WDXRF as an alternative to liquid extraction methods for regulatory compliance testing of Cr(VI) content. As a practical application of this work, we report a value for the Cr(VI) mass fraction of the new NIST Standard Reference Material 2859 Restricted Elements in Polyvinyl Chloride.
Hexavalent chromium (Cr(VI)) occurrence in soils is generally determined using an extraction step to transfer it to the liquid phase where it is more easily detected and quantified. In this work, the performance of the most common extraction procedure (EPA Method 3060A) using NaOH–Na2CO3 solutions is evaluated using X-ray absorption near edge structure spectroscopy (XANES), which enables the quantification of Cr(VI) directly in the solid state. Results obtained with both methods were compared for three solid samples with different matrices: a soil containing chromite ore processing residue (COPR), a loamy soil, and a paint sludge. Results showed that Cr(VI) contents determined by the two methods differ significantly, and that the EPA Method 3060A procedure underestimated the Cr(VI) content in all studied samples. The underestimation is particularly pronounced for COPR. Low extraction yield for EPA Method 3060A was found to be the main reason. The Cr(VI) present in COPR was found to be more concentrated in magnetic phases. This work provides new XANES analyses of SRM 2701 and its extraction residues for the purpose of benchmarking EPA 3060A performance
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.